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Abstract

We analyze observational learning when a fraction of players are uninformed of
the actions of previous agents, and act based only on their private information, while
informed players observe all previous actions. Informed players are uncertain about
the true proportion of uninformed players. They simultaneously learn about this pro-
portion and about the payoff-relevant state. Confounded learning emerges as a robust
phenomenon in this environment. It is also globally stable for a generic set of parameter
values, so that public beliefs converge to the confounded learning point with positive
probability, starting from almost all current beliefs. We also show that correct learning
is always globally stable. In contrast, correct learning may not be globally stable when

it arises due to heterogeneous preferences as in [Smith and Sgrensen| (2000)).
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1 Introduction

The seminal papers of Banerjee (1992) and Bikhchandani et al|(1992)) established the pos-
sibility of herd behavior and information cascades. These papers analyze Bayesian players,
who receive boundedly informative private signals, and learn from the actions of previous
actors. When incorrect herding happens, social learning stops; all but a finite number of
players end up choosing the wrong action, even though society could learn the correct state
if it were able to aggregate the information available to individuals. The possibility of incor-
rect herding depends crucially upon the private signals being boundedly informative. Smith
and Sgrensen| (2000) show that complete learning is guaranteed, if players have common
preferences, and their private signals are of unbounded strength. They show that learning
must necessarily be complete, i.e. the public belief must assign probability one to the true
state in the long run.

In this paper, we examine the implications of having a fraction of “uninformed” players,
who do not observe the actions of their predecessors. Alternatively, these players are be-
havioral, and ignore past actions, an assumption that is in line with experimental evidence
~ see Duffy et al.| (2016])[Weizsicker] (2010) and Ziegelmeyer et al| (2013)[T] Provided that
the prior belief is not extreme, the presence of these uninformed players can potentially play
the same role as the assumption of unbounded signals, by ensuring that players’ decisions
always contain an amount of information that is bounded away from zero. Since each player
observed could be uninformed, his action statistically reveals his private information.

Following this intuition, it is straightforward to show that complete learning is guaranteed
for the rational players provided that the rational players know the precise proportion of
uninformed players, even when private signals are of bounded strength. However, it may be
unrealistic to assume that the rational players know the precise proportion of uninformed
players. This leads us to consider a model with higher-dimensional uncertainty — rational
players are uncertain both about the payoff relevant state, and about the proportion of
uninformed players, and will learn about both aspects as the game progresses. Our main
finding is that complete learning is possible, but it is not guaranteed. In the long run, learning
could be confounded, with the society’s limit beliefs assigning positive weight both to the true
state — which is two-dimensional — and its “opposite”, i.e. the state that is incorrect on both
dimensions. That is, if the true payoff relevant state is A and the proportion of uninformed

players is L (for low), society can assign positive probability to the pair (A, L) and to the

IThese experiments find that there exist individuals who decide exclusively based on their own private
information, ignoring prior actions.



pair (B, H). Since beliefs about the payoff relevant state are interior at the confounded
learning point, in the long run each rational player still uses his private information to
decide. Notably, confounded learning arises even though all players have common values,
i.e. identical preferences over state-action pairs

The message of the previous paragraph can be restated more precisely as follows: our
model shows that there exist multiple stationary points of the stochastic process of public
beliefs — the complete learning point, and the confounded learning point. This raises addi-
tional questions. Does either of these points arise for a distant prior belief? In other words,
is either of these points globally stable — does the belief process converges to a stationary
point with positive probability, starting from any current posterior belief, for a large set of
initial priors that allow learning?

Our answers to these questions, in the context of our model, are:

e Complete learning is always globally stable.

e Confounded learning is globally stable for a generic set of parameters.

This is in sharp contrast with existing literature, where the existence of confounded learning
could preclude complete learning for a large set of reasonable priors.

The paper is organized as follows. We first discuss the related literature. Section 2
sets out the model. Section 3 analyzes the evolution of society’s posterior beliefs along the
equilibrium path. In section 4 we explain the intuition for confounded learning, and provide
necessary and sufficient conditions for confounded learning to arise. In section 5 we establish
that complete learning is globally stable in our model. Section 6 shows that confounded

learning could be globally stable.

1.1 Related Literature

There is an extensive literature on observational learning. In this section, we focus our
attention on the papers that are most closely related.

Smith and Sgrensen| (2000) (SS henceforth) provide a comprehensive analysis of observa-
tional learning, and also developed many of the technical insights that underlie the analysis
in the present paper. They were also the first to show that confounded learning is possible

when players have divergent preferences. fJ| In SS, a fraction of players would like to choose

ZSmith and Sgrensen| (2000)) show that confounded learning is possible when players do not have common
values. We discuss their work more fully later.

3Easley and Kiefer| (1988) examine individual learning (rather than social learning) and find that con-
founded learning is possible, for non-generic parameters.



their action to match the state, while the remaining fraction prefer to mismatch action and
state. In our paper, the underlying economic environment that gives rise to confounded
learning is very different. Players have common values, and every player would like her
action to match the state. Since players do not also know the true proportion of uninformed
players, uncertainty is two-dimensional in our model, while it is one-dimensional in SS. Our
substantive results also differ. In SS, confounded learning could preclude the possibility
of complete learning. In our model, complete learning must happen with strictly positive
probability and is globally stable.

Bohren| (2016)) allows for uninformed players, and assumes that rational players have
a wrong but fixed belief about the proportion of uninformed players. She finds that if
the belief is not too wrong, complete learning is guaranteed, but for a large error, the
posterior-belief process may eventually assign probability zero to the true state or fail to
converge. Bohren and Hauser| (2018) generalize this work by allowing more channels of
mis-specifications. They allow each player misinterpret private signal and to hold wrong
belief of the true distribution of players types. An uninformed player in Bohren| (2016)) is a
player who correctly interprets the private signal but mistakenly think other players all acts
noisily, and a (biased) rational player in |[Bohren| (2016) is a player who correctly interprets
the private signal but holds a fixed wrong belief about the proportion of uninformed players.
If all types have an approximately correct interpretation of signals and an approximately
correct belief regarding the distribution of other players’ types, then complete learning is
ensured. Otherwise, several pathological outcomes could arise: (1) it is possible that some
types assign probability 1 to one state while other types assign probability 1 to the other
state (asymptotic disagreement); (2) it is possible that some types’ long run posterior beliefs
settle down while other types’ posterior beliefs keep cycling; (3) It is also possible that all
types assign all the weight to the wrong state (asymptotic mislearning). Our results are very
different from above two papers — there cannot be incorrect learning or cyclical beliefs, and
there can be confounded learning. These differences arise since rational players use history
to revise their beliefs on the true proportion of uninformed players. In other words, players
in our model are uncertain, but their beliefs are correctly specified.

Bohren’s unpublished Ph.D. thesis (Bohren| (2012))) also examines a model where rational
players learn the true proportion of uninformed players. She provides an example with binary
signals that displays confounded learning. This example is non-generic — for confounded
learning to emerge, the parameters of the model must satisfy a single equation. Consequently,

confounded learning disappears if the primitives of the model are slightly perturbed. In



our model, with a continuum of signals, confounded learning emerges for an open set of
parameters, and is hence robust to small perturbations in parameter values. We also believe
that the results presented here constitute a more systematic and comprehensive analysis of
the problem. In particular, we examine the local and global stability of the stationary points.

Wolitzky| (2018) studies a deterministic social learning model in which confounded learn-
ing and complete learning coexists. One of his finding is that the complete learning can never
be reached if the complete learning point is separated from the starting point of learning
by a line representing confounded learning. In other words, complete learning in his model
fails to be globally stable. In contrast, complete learning in our model is always globally
stable. This is because the uncertainty in our model is of two-dimensional and hence the
confounded learning point can never separate the complete learning point and any current
posterior belief.

Other related literature include Eyster and Rabin (2010) and Acemoglu et al. (2010).
Eyster and Rabin| (2010) assumes every player is rational but mistakenly think other players
are uninformed. They find incorrect herding could happen even with continuum actions and
unbounded signals. |Acemoglu et al.| (2010]) assumes two types of players who differ in their

preferences. Confounded learning arises when preferences are sufficiently heterogeneous.

2 Model

The model is an infinite horizon, discrete-time model. There is a two-dimension uncertainty:
payoff-relevant states 1 = {A, B} and proportions of uninformed players {2 = {L, H}. For
abbreviation, we shall refer wy € 2, as “payoff state”, and wy € {25 as “type state”.

In period 0, nature chooses one state out of four potential states
Q=0 xQ={AL,AH,BL, BH}

according to a common prior Ag = (MM, A\FLABH) | which assigns positive weight to all four

states. Throughout this paper, a belief over the state space (2 is written as three ratios with

\AH _ Pr(AH0)
0 Pr(AL|0) *

In each period ¢t > 1, one player arrives. He chooses between actions {a,b} with the

the probability associated with state AL in the denominator. For example:

objective to match the realized payoff state. The utility function u : {a,b} x @y — {0,1} is

identical for every player and is given as

u(a,A) = (b,B) =1;  wu(a,B) =u(b,A) = 0. (1)



As standard in the literature, one player’s payoff depends only on his action and the realized
payoff state, and is independent from other players’ actions.

Before taking an action, each player observes a private signal S; from a common signal
space. The distribution of the private signal depends on the realized payoff state. Following
the literature, we identify a player’s private signal S; with his private belief s, as if the payoff
state is equally likely to be A and B:

Pr(St|A)%

St I'( |St) Pr(St\A)%—G—Pr(SAB)%

(2)

In other words, the private belief s; of player t is the probability attached to payoff state
being A conditional solely on the private signal S;. The distribution of s; is denoted as
Fer(s) with wy € {A, B}. We assume S; is 1.i.d across players, and hence so is s;. We further

introduce the following assumption:

Assumption 1 F4(s) and FB(s) are mutually absolutely continuous, non-atomic, and have

common support as
supp(F*(s)) = supp(F"(s)) = (s,5) C (0,1),

where s < 1 <'5. FA(s), FB(s) are twice continuously differentiable on (s,5).

The prior belief is not so extreme that uninformed players always choose one action:

.o ST+ AFF
LN AR NG

< S. (3)

Note that here we do not make an assumption on the strength of private signals. All the
arguments apply to both bounded and unbounded private signals, provided that condition
[ is satisfied.

Rational players also observe the public history of previous actions. If player ¢ is rational,
then he observes h; = (ay,...,a;_1), i.e the sequence of actions taken in previous periods.
uninformed players do not observe any previous actions. The realization of each player to
be uninformed is i.i.d across players. The probability that any player is uninformed is either

pr, or py, depending on the realized type state.



3 The Process of Learning

Our analysis focuses on the posterior belief over the state space €2 conditional on a realized
public history h;. Specially, we ask whether the society’s posterior beliefs settle down to a
limit belief, and whether this limit belief assigns all the weight to the realized state. Following
the literature, we say “the society learns” if the posterior beliefs settle down to a limit belief.
Furthermore, we say that “learning is complete” if the limit belief assigns all the weight to
the realized state w € 2. Complete learning guarantees information aggregation, and is of
particular interest.

In this section, we study how posterior belief evolves from period ¢ to period t + 1. We
conclude that posterior beliefs always settle down as a result of martingale property. In other
words, society always learns.

First, we solve for the unique sequential equilibrium. Without loss of generality, from
now on we assume the realized state is AL. We introduce the following notation. Player t’s
information set is denoted as I, = {s;, PI;}, where PI is an abbreviation used for “public
information”. If player ¢ is rational, then PI; = hy; if player ¢ is uninformed, then PI, = ().
Player t’s strategy o; is a function from I; to a distribution over actions {a,b}. For each
w € (, strategies o7y, ..., 0, determines the probability of each history hyy1 € {a,b}'. We use
P; to denote the probability measure induced on H; = Q x {a, b}!, with the understanding
that P, actually depends on some strategy profile. [ Strategies o = {oy,...} form an
equilibrium if V¢

Pio1(BIPL) s < |

a, if <
Ut(It) _ Pi_1(A|PI) st (4)

o s Pr_1(B|PL) 1—s4
b’ lf ]Pt_1(A|PIt) St 2 1

This definition is actually quite intuitive. Because public information PI; is independent

Pi_1(B|PIt) 1—s4
P 1 (AIPL) =

state being B over being A conditional on player ¢’s information set I,. Therefore, definition

of private belief s;, actually represents the posterior likelihood ratio of payoff
says o is an equilibrium if player ¢ choose the action matching the more plausible payoff
state conditional on his information set.

One immediate observation from definition [4|is that player t’s equilibrium strategy can

be represented as a cutoff rule in terms of his private belief s;.

4Here Py(w x hyt1) > 0 for all w € Q and hyyq € {a,b}?, since uninformed players exist.



Lemma 2 Up to a tie-breaking rule, the unique equilibrium is given as

St 2 NFHINBTAGT T if player t is uninformed, 5)

s; > Py_1(B|hy), if player t is rational.

O = a <

In the above lemma, we assume action a is chosen when the player think two payoff states
are equally plausible. This tie-breaking rule is immaterial, since the probability of a tie is
zero due to continuous private belief.

From now on, we use o to denote the equilibrium given in Lemma[2] use P, to represent the
probability measure on H; induced by the equilibrium, and use IP to represent the probability
measure on H = Q x {a, b} induced by the equilibrium. When we talk about the posterior
belief conditional on hy, it is the posterior belief with respect to P;_;. Since there are four
potential states {AL, AH, BL, BH}, we can summarize society’s posterior belief at period
t as a random vector of three likelihood ratios. With probability associated with the true

state AL in the denominator, we write the posterior belief A; as

(6)

P, (AH P, (BL P, (BH
AtE(A?H7A5L7AtBH)E< t1( |ht) Py (BL|hy) Pyy( Vlt)>‘

P, 1 (AL|hy) " Py (AL|hy)" Py_1(AL|Ry)

We denote the equilibrium probability of o, = a,Va € {a,b} at state wywy with belief
A; as ¢(a|wiws, Ay). To represent the equilibrium probability, it is convenient to introduce

random variable x;(A;) for a belief A, = (AAH \BL \BH) a5

BH BL
2lA) = T M)
L+ MM AP+ NP1

We can verify that z;(A;(h¢)) = Pi—1(Blht). Then we have

Pun (1 = ' (0)) + (1 = pu,) (1 = F* (), if v = a;
D F (20) + (1 — puy ) F“ (x4), if v =D.

d(a|wrws, Ay) = d(a|wiwe, ) =

THNGHANEL 4 NEH
payoff state being B at prior belief (\g'f, \BE \BH).

With posterior belief A; defined, we can state the definitions of learning rigorously.

Here and from now on, we use xq = to represent the probability assigned to



Definition 3 Given a history h € {AL} x {a, b}, the society learns along h if
t — +oo = (MM (h), \BE(h), \BH(R)) converges
and learning is complete along h if
(A (h), APE(R), AP () = (0,0,0).

At the beginning of this section, we vaguely state that the society learns if posterior beliefs
settle down. Here “settling down” is rigorously defined using the notion of convergence.
Furthermore, since in Ay(h) the posterior probability associated with realized state AL is in
the denominator, A¢(h) — (0,0,0) means that all the weight is assigned to AL.

The following lemma shows that \*“?) when restricted on {AL} x {a,b}", forms a
non-negative martingale for wjwy € {AH, BL, BH}. The martingale convergence theorem
(Theorem 11.5 in |Williams| (1991)) states that a non-negative martingale almost surely con-
verges to a finite random variable. Therefore, we conclude that almost surely posterior beliefs
always settle down to a limit belief along the equilibrium, and the society (almost) always

learns.

Lemma 4 For wywy € {AH,BL,BH}, {\*“?}ien forms a non-negative martingale when
restricted to {AL} x {a,b}.

Proof. See Appendix[A] m

Proposition 5 There exists a null set E C {AL} x {a,b}", such that for any sequence of
actions under the realized state h € {AL} x {a,b} — E, we have

AP (R), APE(R), AP () — (NS (), A (), AT (R)), (8)

with \X2“? < 400, wiwy € {AH, BL, BH}.
In other words, conditional on realized state AL, the posterior belief (A\AH NBL \BH)

converges almost surely to a finite random vector.

Proof. This result follows directly from lemma [4] and the martingale convergence theorem

(Theorem 11.5 in |Williams| (1991))). m



4 Possibility of Confounded Learning

In the previous section, we showed that society’s posterior beliefs settle down to a limit
belief almost surely. A natural question is whether the limit belief necessarily assigns all
the weight to the realized state AL, i.e. whether learning is complete. In this section, we
conclude that it is not necessarily the case. If the proportion of uninformed players in H-
state is sufficiently higher than in L-state, then it is possible that the limit belief assigns
positive weights to both states BH and AL, and 0 weight to states AH and BL. Under
such a limit belief, any observed actions happen with equal probability across BH and AL.
Therefore, in the limit, even if players still use their private information to decide, their
actions stop providing information regards the likelihood ratio of BH and AL. Following
Smith and Segrensen (2000), we say “learning is confounded”. Confounded learning is very
different from information cascade. When learning stops due to an information cascade, the
information contained in publicly observed actions overwhelms any player’s private signal.
As a result, all the players abandon their private signals and herd. However, in confounded
learning, the information contained in public actions is inconclusive, and players still use
private information to decide.

We can intuitively understand this result in the following way. Since society’s posterior
beliefs always settle down, the observed action frequency also settles down. Without loss
of generality, we can think in terms of the frequency of action b. To have positive weight
assigned to state BH, the observed limit frequency of action b must be plausible under BH.
When the payoff state is B rather than A, then both types of players are more likely to
choose action b. However, the increase of limit frequency of action b due to payoff state
change can be balanced by the type state changing from L to H. If the limit belief assigns
more weight on payoff state being B than the prior belief does, the rational players, who
observe the limit belief, are more likely to choose action b. There are fewer rational players
under state BH, hence the limit frequency of action b will move down.

To summarize, if the limit belief assigns more weight to the payoff state being B than
the prior belief does, then in state AL, actions b is generally less likely, but there is a
high proportion of rational players can counterbalance the effect. In state BH, action b is
generally more likely, but there is low proportion of rational players. These two forces can
be balanced, provided that there is a sufficient fall in the number of rational players from
AL to BH. In fact, this balance is a special case of Simpson’s paradox. The probability of
action b is strictly higher among rational players and among uninformed players under state

BH than under state AL. However, the average probability among all players could be equal

10



across these two states, as long as there is a sufficient change of proportion of uninformed
players.

A similar argument shows that the limit belief cannot assign positive weight to AH
and BL. In fact, any observed limit frequency of action b is incompatible with state BL.
Knowing the limit belief, rational players know the frequency of action b should be higher
than observed if the state is BL. See Proposition [7] for an argument of AH.

Above findings generalize the observation in section 1.4 of Bohren|(2012). Bohren studies
learning with unknown proportion of uninformed players in a special example with symmet-
ric binary private signals. She observes that with proper parameters two different states may
be indistinguishable in the long run, for the reason that the probability of observable actions
is the same across these two states. Though her observation bears similar characteristic, our
findings are more general and insightful. With a symmetric binary signal structure, param-
eters in her model must satisfy one “equation” to lead to incomplete learning. This means
incomplete learning is not a robust phenomenon in her model. With slight perturbation
of the parameters, incomplete learning disappears. Our model assumes a continuous pri-
vate signal structure. The condition of confounded learning is determined by inequality [10]
Hence confounded learning is a robust phenomenon in our model. Bohren| (2012))’s assump-
tion of symmetric binary signals also simplifies the argument. With proper parameters, the
likelihood ratio between these two indistinguishable states stops evolving immediately after
herding. In our model, as long as posterior belief at period ¢ doesn’t equal the confounded
limit belief, all the likelihood ratios still adjust upon observing period t’s action. Therefore
more dynamics analysis is needed. We shall explore the dynamics property of our model in
following sections.

Smith and Sgrensen (2000) find confounded learning could arise when players have suf-
ficiently heterogeneous preferences. We remark that our result is quite different from theirs.
From the economics perspective, our model assumes all the players have common values,
and confounded learning arises because of the unknown proportion of uninformed players.

In the rest of this section, we formalize above intuition of confounded learning’s existence.
The first observation is due to Smith and Sgrensen (2000), and states that society’s limit

belief must be a stationary point of stochastic process A; = (A, \BL \BH),

Lemma 6 Letw = (may, L, pa) € R? satisfying that m,,., > 0, Vwiws € {AH, BL, BH}.
Let

S = {h e {AL} x {a, b} |(AL"(h), AL (h), AZT (1)) = (Wan, o, Tam)}-

11



IfP(S) > 0, then

¢(a|wiws, )

Twiws = Twiwe ¢<Q|AL7 7T> ,VO& € {CL, b} (9)

In other words, if stochastic process Ny converges to (Tam, T, TpH) with strictly positive

probability, then (Tag, gL, Tpy) must be a stationary point of A;.

Proof. The result follows Theorem B.2 in [Smith and Sgrensen| (2000). =

Equation [J] says that 7., # 0 implies ¢(a|wiws, ) = ¢(a|AL, ). Intuitively, this
means that if limit belief (mam, 7L, Tpy) assigns positive weight to state wjws , then limit
frequency of action o € {a,b} must be indistinguishable across states wiws and AL.

Using Lemma [0, we can prove our intuition that the limit belief must assign zero weight
to states AH and BL.

Proposition 7 If stochastic process (MM NBL NBHY converges to (map, mpr, T ) with strictly

positive probability, then may = wgr, = 0.

Proof. First, we have
G(b| BL, x(m)) = pLFP (w0) + (1 — pr) F ¥ (x()),

and that
G(D|AL, x(m)) = pLF*(x0) + (1 — pr) F* (2(m)).

By definition {jgzg =12 50 fB(s) > f4(s) on (s,3) and fB(s) < f*(s) on (3,5). Then it
follows that

FB(s) > FA(s), if s € (s,5);
FB(s) = FA(s), if s € [0,5] U [5,1].

Due to assumption that z( € (s,5), we have ¢(b|BL, ) > ¢(b|AL, ).

Second, we have
O(|AH, x(m)) = pr F* (wo) + (1 — p) F* (w(m)).
To have ¢p(b|AH, ) = ¢(b|AL, ), we must have z(m) = xo. But if this is the case, then
o(0|BH, ) = F"(x0) # F*(x0) = (b|AL, ),

12



which means mgy = 0. That is, z(mw) = 2y implies that zero weight must be assigned to
state BH. We have shown that zero weight must be assigned to state BL in the first part of
this proof. Therefore, x(m) = z( implies that zero weight must be assigned to payoff state
being B under belief 7r, and this is a contradiction. m

In the next proposition, we rigorously prove that the limit belief can assign positive
weight to state BH if it assigns more weight to payoff state being B. We can also prove that

such a limit belief must be unique.

Proposition 8 If

¢(b|AL,S) > ¢(b|BH,3) (10)

then there exists unique Tpy > max{{*%-, 11:’;;’} such that

P(b|AL, (0,0,7pp)) = ¢(b|BH, (0,0, 75y )) (11)
In other words, when conditz’on is satisfied, A* = (0,0, 7%) gives the unique limit belief
where the observed frequency of action b is compatible with state BH .

Proof. Let

D(z) = ¢(b|BH,z) - ¢(b|AL, z)
= [puF"(z0) + (1 = pu)F¥(2)] = [prF* (20) + (1 — p) F*(x)]

be defined on z € [0, 1]. Conditionis equivalent to that D (3) < 0. Since FB(xq) > F4(xy),
D(xg) > 0 and D(s) > 0 always hold. We have

D'() = (1= pu) fP(2) = (1 = pr) f(2).

o . B s —s — — —
By definition ;AES; = 17, so ©'(z) > 0 on (s, Q_IP;EPL) and ©'(x) < 0 on (2_1p;’pr,s).

Thus, there is an unique z* € (max{xy, 271;;’pr},§) such that ©(z*) = 0. Uniqueness of

sy follows directly. m

We conclude this section by stating that long run learning is either complete or con-
founded.

Proposition 9 If stochastic process (AM NBL NBHY converges to (mam, 7pL, Tr) with pos-

itive probability, then either (mam, 7, mer) = (0,0,0) or (mam, 7L, 7H) = (0,0,75y),

13



where Ty solves equation [11. In other words, learning is either complete or confounded.

Proof. This follows directly from Lemma [6] and Proposition [§] =

5 Complete Learning is Globally Stable

In the last section, we show that long run learning needs not to be complete despite the
existence of uninformed players. In this section, we show that although complete learning
will not arise for sure, for a generic prior it will arise with strictly positive probability. This
is true even if private signal is of bounded strength. Therefore, the existence of unknown
proportion of uninformed players still helps long-run learning.

To make the statement slightly precise, without loss of generality we denote posterior

belief in period ¢y as A, and we prove that
Pr(tlim Ay = (0,0,0)|A) > 0.
—00

The proof consists of two parts. In the first part (Lemma , we prove that: whatever
current belief A the society holds, after observing some history [)E), the updated posterior
belief A(h|A) = (A (L |A), ABE(HL |A), ABH (B |A)) must have its third component strictly
below 73 . In the second part (equation , we use Fatou’s lemma to prove that: a process
Ay starting from A(hf |A) must converge to (0,0,0) with strictly positive probability. This is
driven by the facts that A?" is a martingale and its initial value AP (h] |A) is strictly below
the confounded value 7};;,. Assume oppositely that A; converges to the confounded learning
point (0,0, 7%,;) with probability 1. Then AP# must converge to 7}, for sure. But this
contradicts Fatou’s lemma: the expectation of the limit of AB# is 7%, and is bigger than
the limit of the expectation of AP, which is AP (hf |A) since AP" is a martingale. This
violates Fatou’s lemma which states that the limit of expectations must be no less than the
expectation of the limit.

Recall that any finite history happens with strictly positive probability. In Lemma[I0] we
proves that posterior belief moves from A to A(h |A) with positive probability. In the second
part, we show that posterior belief move from A(h} |A) to (0,0,0) with positive probability.
Therefore, we can conclude that with positive probability posterior belief moves from A
to (0,0,0). In other words, complete learning must arise with strictly positive probability.

Below is the formal proof.

14



Lemma 10 Given any prior belief Ay that allows for confounded learning, for all current

belief A € R, , there exists a finite sequence of actions f]% such that
N (b |A) < Th

where (0,0, 75 y) is the unique confounded learning point.

Proof. Starting from any current belief A, if AB# > 7% we construct following action

sequence
- a; if My <75y
bt = )
b; it Ay > mhy.
)\BH+)\BL
Here \; = WIS a random variable defined for any posterior belief A;. It represents the

likelihood ratio for payoff state being B over A under A;.

It is directly to verify that % < 1ift & < mhpy; % < 1iff Ay > 75y; and
that Zlﬁfi‘g = i((ilﬁfiz)) = 1iff \y = 7mgy. In other words, if \; < 7}y, then observing

action a reduces AP if \; > 7%, then observing action b reduces \B#.

ABH must decreases.

)\BH

Therefore, conditional on observing any action in the sequence h7,
If there exists infinitely many decreases which are bounded away from 0, then must
eventually decreases below mp. This is equivalent to show that: de > 0 and and a sub-
sequence ti, such that )\, is ¢ away from 75,. This is further equivalent to show that:
conditional on observing h7, \; cannot converge to m%;. We shall show such convergence is
impossible.

To show this, we need the following observation: if Ay € {A; € R3 |\, € [Ag, Ty}, then

conditional on observing action a, A must decrease. It is direct to verify that

o(a|BH, Ay) ¢(a|BL, Ay) <1 o(a|AH, A\y)

A € o, Thy] = <1, Al it S ZAE O 12
¢ € Mo, ] d(alAL, \y) d(alAL, \y) d(alAL, \y) (12)
This observation follows from that:
BH ¢(a|BH,A+) BL ¢(a|BL,A+)
Aii(a] ) = ——2AL AtA;ﬁQHA R Yo (13)
L+ N saranay T

as long as Ay € R3 .

This observation has the following implication: if at period ¢, Af < 75y, then \; has to
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first move away from 75 ,. It cannot move close to 75, until it drops below \g. Therefore,
if \y = 75y, it must eventually approach 7}, from above.
Since \; > mjy eventually, there exists a finite ¢ such that A\, > 7}y for all ¢ > .

Then by construction of h”, from period %, only action b is observable. It is direct to that
¢(b| BL,A¢)
¢(b|AL,A)

that AP — 400 implies that A — co. But we can verify that: observing action b while
A\t > Ty must reduce A, So MM is bounded above by MY, m

Conditional on observing b, if (A, APE, APH) converges to the confounded learning

> 1 always hold. So AP must increase to +o0o. With assumption that A\, — 75,

point (0,0, 75,) with probability 1, then
R = B[ lm AP AL NP (57 |A)] > XP(5T[A) = lim EDPHAL AP (00|A)). (10

Here the first equation follows from the assumption that posterior belief converges to con-
founded learning point with probability 1; the second equation follows from the fact that
APH is a martingale conditional on AL and hg} But this violates Fatou’s lemma. There-
fore, conditional on hz;, complete learning must arise with strictly positive probability. We
also note that the probability of observing action sequence f)Z) is strictly positive since this

sequence is finite. So we have the following result:

Theorem 11 In an observational learning model with unknown proportion of uninformed
players, given any prior Ny that admits confounded learning, for all possible current belief

A € R3 ; complete learning arise with strictly positive probability.

6 Confounded Learning could be Globally Stable

In the previous section, we show that complete learning shall arise with strictly positive
probability. In this section, we derive sufficient conditions for a similar result to hold for
confounded learning.

The first result we have is that confounded learning is “locally stable”: if society’s current
posterior belief A; is sufficiently close to the confounded learning, with positive probability
posterior beliefs settle down to the confounded learning. This result is obtained as a corollary
of Theorem C.2 in [Smith and Sgrensen| (2000). Below we give a rigorous statement.

A rigorous definition for a stationary point of a stochastic process to be locally stable is

given as following:

16



Definition 12 (Locally Stable Stationary Point) Let (2, P, F;) be a generic filtered prob-
ability space, and {\;} : N x Q — R"™ be an adapted discrete-time stochastic process. Then
a stationary point A* € R™ is locally stable if there exists an open neighborhood U > A* such
that

P({ lim_Ayyii(w) = A'[A € U}) > 0,

Theorem 13 Assume there exists (0,0,75y) satisfying equation so that confounded
. . . . « A
learning exists. If belief updating rule o(o, \PH) = AfH%

around (0,0, 75 y) for o € {a,b}, then (0,0, 75y) is locally stable.

weakly increases in AP

Proof. See Appendix Bl =

To strengthen the local stability of confounded learning into global stability, we need
to show: whatever society’s current belief is, society’s posterior belief moves into the local
neighborhood U with positive probability. In the rest of this section, we are going to show
this. For any given current belief A € R? ., and any ¢ > 0, we construct a finite sequence
of actions btco . Conditional on current belief A and observing actions sequence hg, society’s
posterior belief moves into the pre-determined e-neighborhood of confounded learning A*.
Since any finite sequence of actions happens with strictly positive probability, we can obtain
the global stability of confounded learning from the existence of f)tCO :

The Ijtco is constructed in two phases. We first construct an infinite action sequence h
that can push society’s belief arbitrarily close to axis A®#. In other words, in the end of the
first phase, society’s posterior belief A must satisfy that A7 and A\P” are sufficiently close to
0. By doing so, we roughly turn the global stability problem from a three-dimension problem
into a one-dimension problem. Then, in the second phase, we construct an action sequence
consists of action b to push society’s belief into the pre-determined —neighborhood along
the direction of axis-\P#.

Intuitively, construction in phase I is done in the following wayﬂ . given any current

AH BL
belief A; € ]Ri +, select the action that reduces i‘fTH + /’\\}TH For a generic A;, we can always
t t

)\AH )\BL
reduce Svidalbv e for that
t t

AH BL
AN

A (a) APE(a) L GOIBH A (N0 AP AP
oty 3a)) ~ o 3jm) = st (i apmay) ~ o))

5See appendix [C| especially lemma for a rigorous version.
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. )\AH )\BL .
By doing so, )\g*H + /\}TH form a decreasing sequence and are bounded from below, and hence

/\A )\BL
must converge. We conjecture that for a generic set of learning primitives, /\BH + /\BH — 0.

Let us rewrite somety s belief P, = (pH, pBL pPH) in probablhtles 1nstead of ratios. It is

BL AH BL
direct to see that 2 )\BH + :\\BH =B ;’g—H Now, let us assume that + 7 — ¢ > 0, then
t t

P, must converges to a limit set P, which lives on the plane determmed by ;ﬁ—g—k% =c.
We conjecture such a limit set P4 cannot exist for a generic set of learning primitives.
To see the intuition of this conjecture, let us assume that Puysier = {Ps;, Ps, }, then we must

have coordinates of P, s satisfying the following equations system:

PS1(a1) = P52§
P82(a2) = P813
A A
patt N I v N Py _ )

Here the first row represents three equations that there must exist an action «; such that
society’s belief moves from p,, to ps, conditional on seeing «;; the second row represents
another three equations that there must exist an action as such that society’s belief moves
from ps, to ps, conditional on seeing ap; the two equations in the third row follows the
Therefore, if the cardinality of P, is 2, then the

six coordinates in Pclusm must solve eight equations. This seems to be impossible under

a generic set of learning primitives. This intuition Works if || Pouster|| > 2. In fact, the
cardinality of P.j,ster cannot be 1 with assumption that £ Ll + i; =c. ﬁTo move from the
above intuitive conjecture to a rigorous statement, we need cond1t10n 1 in theorem [I4 In

other words, if condition 1 is satisfied, the

% — 0 must hold. Interest readers can
refer to lemma [16] in appendix [C] for a detailted proz)f. From intuition described above and
numerical experiments we performed, we believe that condition 1 holds for a generic set of
learning primitives.

The ultimate goal of construction in phase I is to push society’s belief sufficiently close

to axis AP which is a stron tat t th AL LAY 0. Aft 11, th b1
, ger statement than Jpp + Vi — 0. er all, the ratio goes

to 0 could happen if MM ABE are large, but AP increases fast enough. If this is the case,

>‘tBH+)‘tBL
A = EEFSva
At = +00 in a sub-sequence t. (See lemma in appendix |C| for a detailed computation.)

— 400. We can actually compute the long run frequency of each action if

SIf || Puuster] = 1, then the posterior belief in ratios Ay corresponding to ps € P.yster must satisfy
A 6 {0, +oo} x {0, +oo} x {0, 5, +oo}. We could verify that no such A, can be stationary and satisfy

T + BH—c>O

ps
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Such long run frequencies imply that )\iH — 0 and /\iH — 0 if and only if condition 2 in
theorem [14] holds.

Therefore, with condition 1 and 2, we can push society’s belief arbitrarily close to axis
APH  Depending on the ¢ in the pre-determined e—neighborhood, we can determine a proper
period to stop pushing the belief closer. And the construction in phase I is complete.

Let us denote the society’s belief at the end of phase I as A;. As long as AAH \BL
are negligible comparing to AP# to push the belief towards A*, we just need to push \B#
towards 7. This can be done by action b for that ¢(b|Blz;\) < 1if A > 7y and that
% >1if A < 7mpy. I Wlth condition 4 in theorem |1 ﬁ ABH can not jump across ;.
Therefore, we could use a long sequence of action b to push society’s belief from A; into the
pre-determined e—neighborhood, provided that /A\;‘% + % stays close to 0.

The only thing needs to worry in phase II is that /’\\BLIL, may increases too much, which

)\BL

implies that is no longer negligible, comparing to \B¥. ﬂ In general, we can control

the ratio of % in phase II by shrinking it really small in phase I. However, shrinking ;,i,i

doesn’t solve the problem if AP#(§¢|A) — +oo. If this is the case, then shrinking 2pp in

)\BH

phase I comes at the cost of explodes, and a super long sequence of actions b to push

ABH close to 7y in phase IL. It is not clear that ;\,% stays negligible after seeing a super
long sequence of actions b, even if it starts with a super small value. In proposition |31 we
deal with this situation. With condition 3 in theorem we can always push the society’s
belief into a position where AP# is bounded above while i‘,,ifl is arbitrarily small. In Figure
[, an example of beliefs” movement in phase II is depicted.

The set of learning primitives that satisfy condition 2 and 3 in theorem are open.
Furthermore, from numerical examples, we conjecture that condition 3 actually holds for all
learning primitives. Therefore, we believe that global stability of confounded learning is a
robust phenomenon which arises under sufficiently many learning environments.

To summarize, we have the following theorem:

Theorem 14 If prior Ay € PB, then for any current belief Ay € R3 | and e > 0. If

b|AH x b|BL,x)—¢(b|BH,x
1 3(@ ¢((b|\BL m)) < g(( |); w?ere S(x) — iéb||BH,g;))_i((b‘|AH,z)) on x € [IBH, 1]
z¢(b|BH,x

and y = (—2)p(b|AL,z) tad(b| BHz)’

9 loglalAH,)—log p(al BL.L) - logé(alAH.1)—log $(alAL.1)
* Tog (B BL,1)—log p(BAH,1) ~ log $(b|AL,1)—log $(b]AH,1)

7 ABHABL \BH :¢ A4
A= TTAAT ~ A\ if

8We don’t need to worry about A4 since i;fZ always decreases conditional on observing action b.
Therefore, as long as A is negligible to AB¥ in the beginning of phase II, it must stay negligible.

Sy i )\B w is sufficiently small.
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Figure 1: Belief movements in phase 2

g log(alAL1)~log o(al BL1)
* log ¢(b|BL,1)—log ¢(b|AL,x)

log ¢(a|BH,1)—log ¢(a|AL,1) ,
log ¢(b|AL,1)—log ¢(b|BH,1) ’

>

\BH
/. ABH oI BH, 57 7)

\BH

strictly increases in AP
d)(b‘ALvABH_'_l)

then there exists a finite sequence of actions f)tco, such that
[Aci1, (b5 [A) — A < e.

In other words, starting from Ay, after seeing hg, the society’s posterior belief enters the
e—neighborhood of confounded learning.

Furthermore, by local stability of confounded learning A*, 3 €9 > 0, such that
||At+t0([thO|At) — N <e = klirf At yig+r = A" with positive probability.
—400

So A* is globally stable under above conditions.

Proof. See Appendix[C] m

7 Conclusion

We study the effect of uninformed players on long run learning in an observational learn-
ing model. Because uninformed players act exclusively on their own signals, their actions
keep generating new information. We argue that if the proportion of uninformed players

is unknown and rational players need to simultaneously learn the true proportion and the
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payoff-relevant state, then confounded learning could arise. We further show that complete
learning is globally stable: for a large set of priors, starting from any current belief, society’s
belief settles down to complete learning with positive probability. We also give sufficient

conditions that guarantee confounded learning to be globally stable.

A Proof of Lemma 4

We first compute the evolution rule of A;**?. Conditional on seeing action a € {a, b}, we

have

;Pt(wlwﬂhtya) _ Pi1(wiwa|hy) ¢(afwiws, Ae(he))
- ]P)t(ALVLt,O{) - ]P)t—l(ALVLt) ¢(Q|AL,At(ht))

P(ar|wiwa, Ay(hy))
¢(a| AL, Ay(hy))

X2 (hy ) = A2 (hy) (15)

Using evolution rule [I5], we have

ENATIAL, b
= A (e, a)o(al AL, Ny(hy)) + A2 (he, D)G(D] AL, Ay (R ))

wiwn (p  Olalwrwa, M), o wiws(p  P(blwrws, Ay(hy))
[)\t (ht) ¢(a|AL,At(ht)) ]Qb( |ALaAt(ht)) + [)\t (ht) ¢(b|AL,At<ht))

= A9e2(p,). (16)

[o(b[AL, Ay (h))

It is obvious that A\;**“? is non-negative since it is a likelihood ratio. This completes the

proof.

B Proof of Theorem [13

For reader’s convenience, we first rewrite Theorem C.2 of |Smith and Sgrensen (2000)) in our

notations.

Theorem 15 Let {(as, Ay)) be a discrete-time Markov Process on {a,b} x R3, with transi-
tions
A1 = o(ay, Ay), with prob ¢(oay| AL, Ay).

Let A* be a fized point of (v, ). If
1. ¢(a|AL, A*) is continuous at A*, and p(a,-) is C' at A*;
2. Dop(a, A*) has distinct, real, positive, non-unit eigenvalue;
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3. ¢(al AL, A*)Dup(a, A*) + $(B| AL, A) Dyp(b, A7) = I
Then, A* is locally stable.

It is straightforward to verify that ¢(alAL,A*) is continuous and that ¢(«,-) is Ct at A*.

We further compute

p(al AH,A¥)
AN |BOL - 0
Da(,O(CL,A ) = 0 —¢>(a|AL’A*) 0
s 2 s T
_<7"Bffz‘1) Gy (77131113-*1{1 Gi 1+ (TI'B:i]-)Q Gl_
S(b|AH,A¥) 7
S([AL,A™) 0 0
*) o(b| BL,A¥)
™ 2 ™ T
~(pn) G2 G 1 i G
where s o
)P EE) — (= ) £ ()
b é(a|AL, A¥) )
and s o
o —(1 = po) fA(EEL) + (1 — pa) f P (224
2= .

¢(b|AL, A¥)
Then it is straightforward to verify that ¢(a|AL, A*)D,p(a, A*)+ ¢(b|AL, A*)Dyp(b, A*) =T

holds. Furthermore, let

1 0 0
0 — 0 1 0
T"BH ___"BH _
(TFBHH) ¢ (WBH+1)2G1 1
TBH a ¢(a|AH,mB) 1 TBH a ¢(a|BL,mgfr)
(rpu+12 1 ¢GlALr ) (rpa+12 1 $@ALwpg)

Then we can verify that Q~'Dyp(a, -)Q = M,, where

WS o

w0
0 0 1+ @r;f—fl)QG’l_

B3 o o

w0 s
0 0 1+ (Tr;f—fl)gGg._
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We observe that G; > 0 and Gy < 0 since mpy > =2Z as in proposition (8 and that fB(;‘”) =

1-pr fA) —
1%. Then it is straightforward that D,p(a, A*), a € {a, b} have real, distinct and non-unit
eigenvalues. Finally, with assumption that %ﬁfm > 0, we have 1+ w;f—i’l)QGg > 0. So all

the eigenvalues are positive as well.

C Omitted Proofs in Global Stability

In this section, we first explicitly construct an action sequence h¢'. In lemmas and

/\BH

, we prove that society’s posterior belief can be arbitrarily close to axis conditional

on seeing sufficiently many actions in h. In lemmas and , we prove that society’s

belief, starting from a position sufficiently close to axis A?# and is bounded above by a
finite number A < 12
confounded learning after observing a long sequence of action b. In proposition 31 we show

_)\BH

H , can eventually enter any pre-determined £—neighborhood of
that we can always push society’s belief into a position sufficiently close to axis and is
bounded above by a proper 3 Aot of computation results are used in the proofs. To not
to disrupt the logic of proofs, we verify these computation results in the end of this section,
from claim B2 to claim B7

We arbitrarily choose and fix a current belief A € Ri + and a € > 0 in this section. We
use A(h|A1) to represent the posterior belief updated from A; after seeing history h.

AH BL
At period t, action f)tc ! is chosen to reduce the ratio ;\\fﬁ + ;\}TH We observe that
t t

MM p(alAH, Ay) ) ABL ( ¢(a|BL, Ay) .
\BH (¢<a|BH,At> - > \BH (¢<a|BH, A )

. . . (NAH )BL . . .
Therefore, if we consider the pair ()\zﬁ, AfTH)v after seeing an action, it can only moves toward
. . . . . )\AH )\BL
two opposite directions. Therefore, generically we can choose an action to reduce /\ETH + kitTH

Following this observation, h* is constructed in the following way: at period t, if there
M) 4200 A L AP then bt = a; otherwise
AP (@) T AR () T AP AP L ’

A (HTTIA) | ABL(1]A) . )
obviously form a decreasin
NP (TTIAY TN (6T A Y &

exists an action « € {a, b} such that

choose action a. From the construction,

9In this section, most of the times, we don’t explicitly distinguish bounded private signal and unbounded
private signal. If private signal is unbounded, we understand that 1T:5 == 400
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sequence bounded from below by 0. The following lemma shows that it must converge to 0
with condition [I8

Lemma 16 Let xgy = Wg‘;il. For all x € [xpg, 1], let §(x) = i((z“gé”z)):ﬁ((ﬂﬁgzi)), if
b|AH, x x¢(b|BH,
§(o) QA1) Mo BH, o) (18)

<§(0). wherey = ¢

o(b|BL, x) 1 —2)¢p(b|AL,x) + x¢(b|BH, x)

then there exists an infinite sequence h such that

o AOETIA) APE(BE A
=+ APH (7T A) AP (b7 |A)

=0,

where A is the arbitrarily chosen current belief at the beginning of this section.

For notation convenience, from now on in the proof of lemma , we drop h¢' with the

understanding that A, is actually A(hS*|A). For example, when we write A7

, We mean a
number A7 (h|A), rather than a random variable.

Proof of lemma E Since :\\i;;z + ;\\:Bi; form a decreasing sequence bounded from below,
it converges for sure. Let’s assume it converges to a positive constant c¢. Following sequence

of claims lead to a contradiction.
Recall that z; = by following two claims |17 and (18 says that eventually x;

T+AAHEABL AP HD
must stay strictly above xg.

Claim 17 3 infinite sub-sequence t;, such that Ty, — .

Proof. Assume the opposite. By the construction, we have iﬁﬁ + jgif{ monotonically
t t
decreases and is bounded from below, so
)\AH )\BL )\AH )\BL
lim | g;;l gl—"i_l] - EH+ EH}
tp——+o00 )\tk+1 )\tk+1 )\tk )\tk:
= lim [/\tfl}cH ¢(atk|AH7‘rtk) _¢(atk|BH7‘rtk) /\ch ¢(O‘tk|BL7$tk) _¢(atk|BH7‘rtk):|
t——00 AiH <]§(oztk|BH, ‘xtk) )\tB;H ¢(Oétk|BH, SCtk>
= 0.

o, |AHzt, )—¢(ae, |BH,xt, ) .
£ d)(othIBH,a:t:) k- is strictly
(atk|BL’ztk)_¢(atk|Bvatk) -
¢(ar, |BH,aty)
AAH . . NAH  )\BL
0. Therefore, we must have ,\;TkH — 0. Furthermore, since we assume lim; . o, )\ETH—l— /\itTH =c,
k

Fact (verified in the end of this section) says that il

bounded away from 0. The assumption that x;, — z( implies that ¢
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Ak
we must also have BT — ¢
tg

To summarize, with assumption that

/\AH )\BL
/\;fH + )\t‘fH — ¢; and ty s.t. x, — To; (19)
t ¢
we must have
)\AH )\BL
A A 20)
tL tg

This implies the limit position of A;, must be

(1+¢)(1—x)

AH \BL CZo \BH
D UV Ay

T+ (1 —a0) (21)

Now we prove that A;, cannot converge to above limit. For a sufficiently large ¢, let us

consider the action [’Jg: at period t;. If hgj = a, then z;, 11 must be sufficiently close to

zo[1—FB (z0)] #(b|BL,x)

— .a c .
ST POl a e T @] = Lt < Zo- Then by!, must be b since OB < 1 when

I ERND et AN M
r < x9. However, we must have [)\é“H + /\BkH } — [/\é“H + )\gH
tp+2 tr+2 tp+1 tp+1

} be sufficiently close to

$(alBL,zo) SOIBL@f, 41)—¢(b|BH2f 4,
#(a|BH,x0) S(OIBHz], )

) which is strictly bounded below from 0. This contradicts

)\AH )\BL
that S + $Fm must converge.
t t

xoFB (x0) —

Similarly, if f)til = b, then w4+, must be sufficiently close to PP T a F ] =
AH

b ol : ¢(a| BL,z) Aigt2
Ty, 11 > ®o. Then by ' must be a since SalBH D) < 1 when x > xy. We also have [/\fi’iz +
\BL A\AH \BL ) bIBL ¢(a|BL,xb . )—¢(a|BH 2l . ,)

] — |5 + 17| must be sufficiently close to cd)(blBH’xO) et T bet?
>‘t,€+2 )‘tk+1 )‘tk+1 B(b] ) ¢(GIBH7xtk+1)

which is also strictly bounded below 0. m

Claim 18 7 infinite sub-sequence t;, such that Ty, < Xg.

Proof. Assume the opposite.
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It is direct to verify that % < 1 and i((f\'gﬁ’?) <lifx <zy So
tp—+o00 )‘il—_{l A'ii{l )\iH )\,QH
o (WOOAIL 1) — GBI ) | N UL 1) — GBI, ),
ti—rFoo P APH ¢(b|BH, x,) APH ¢(b|BH, xy,)
NAH .
ti—r+o0 "\ o(b|BH, zv,)
Use fact [34] we have again
)\Z?“H — 0; )\ECL —
NI N c.
Then
lim [)\QH ¢(b|AH> 'Itk) - ¢(b|BH7 xtk) + )\iL ¢(b|BL’xtk) - ¢(b|BH’ xtk)]
ty—+oo "APH ¢(b|BH, xy,) AH ¢(b|BH, x,)
i [Agkz ¢(b|BL, x;,) — ¢(b| BH, xtk)] 0
ti—+oo " AL ¢(b|BH, x,)

implies that x;, — 9. Then we can just cite Claim . [

There is a one-to-one map between A; and P, = (p 1 pBL pBH) which is the society’s
AH
posterior belief represented by probabilities rather than ratios. We can verify that :\\fTH +
ABL pAH pBL 3 ¢
Som = Do + Mo, VA € RY

AH BL
The following claim describes the limit of P, under the assumption that :\\fTH + ;\fTH — C.
t t
The limit of P, must converges to a set P.yser. Starting from each limit point P;, there
exists one action «. Upon seeing this action «, society’s belief update from P, to another

limit belief in P ster.

Claim 19 3P usier = {Ps}ser satisfying

1. Each Py € Puyster s a cluster point. In other words, 3 sub-sequence tj such that

llmtz*)oo Ptz = PS.

AH BL
2. For each P, = (p?,pBL pPH) we have ZzBH + I’:ng =c, and x, > x9.

3. For each Py, 3 at least one action o € {a,b} such that Ps(c) € Payster-

Proof. The existence of cluster set P.,ser following from the fact that an infinite se-

quence in a compact space must have convergent sub-sequence. The sequence of probabilities
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(pAH | pBL pBH) lives in a compact simplex

A = {(p* pPE pPHj0 < pH pPl pBH < 1,0 < pAH 4 pPE 4 pPH <1},

The existence of a set of cluster points follows directly.

AH BL
By the fact that p, is a cluster point and the assumption that z e + ;%—H — ¢, we have
t t

g 2; + S:;;Z = c¢. This ratio is always well-defined for the reason that pSBH can’t be 0. From

the fact that Z Z;Z % forms a non-increasing sequence, if pP# = 0, then p2# = pBL = 0.
Furthermore, because of claim , P, =(0,0,0) is impossible. That x5 > z follows directly
from claims 1’7 and 08

For a cluster point Ps and corresponding sub-sequence P, divide the sub-sequence fur-

ther into two sub-sequences P« and Pps.s. Here at a particular belief P if by the construc-
k
tion, action cy; = a, then it is classified into Pe. Here at least one sub-sequence of P

and P,.» must be infinite. Without loss of generality, assume that Pyse is infinite. Then
k

BZ!“+1 — Ps(a)
By definition, Ps(a) is a cluster point. m
Following two claims says that, under condition (18, at a limit belief P, upon observing

an action b, society’s belief must no longer lives in the limit set P.,se-. In other words,

under condition from some period on, bto ' must solely consists of actions a.
Claim 20 For each P, € P,y ster, we have

pi"  $(b|BL,x,) — ¢(b|BH, )

VT = G(bBH.z,) ~ o(bAH.x,) .
Proof. By the fact that o € {a,b} such that Ps(«) € Pauster, we have
pi pdt _pit ¢(e]AH, x,) | pPt ¢(a] BL, x,)
pet - pPt pPfo(e|BH, x,)  plt ¢(a|BH, z,)’
which is equivalent to
pMe(a|BH, x,) — (o] AH, x,)] = p*[¢(a| BL, ;) — ¢(a| BH, x,)]. (23)

Following claim[17]and claim[18] z; > zo. We can verify that ¢(a| BH, z;)—¢(a|AH, ) #
0 and that ¢(a|BL,z,) — ¢(a|BH, z,) # 0. Lastly, that pPL = 0 implies pM = 0, so
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ij 7 p pBH = C cannot hold. Therefore, we can rewrite equation [23| to obtain [ |
Claim 21 If condition in lemma |10 is satisfied, then for all Py € Paysier, Ps(b) & Pauster
Proof. Assume the opposite that Py(b) € Pyster- Use the descripition , we have

¢(O|BL,x5)  APP ¢(b|BL,x;)  @(b|BH, x4(b)) — ¢(b|AH, z5(b))

If 25 € (0, 2pn), following the same reasoning as in formula 13| we have z4(b) > z,. By

claim , we must have §(zs(b)) > F(zs). By fact , % < lifxzs € (xg,xpg). There-
$(b|AH z)

fore, if x5 € (29, zpy), we must have §F(zs(b)) > F(zs) > S(a:s)m,
equation So, if x5 € (zg, xpy), then Py(b) & P.uster-

If 25 € [xpu, 1], then by claim 32| and claim [33] we must have F(z(b)) > F(y(zs)) where

zs¢p(b|BH,xs)
y(xs) = (1—2)0(b|ALzs) +2s$(b| BH,z5)

lemma [16l =

which contradicts

Then equation [24] contradicts the sufficient condition in

The following claim brings the contradiction: if f)tc ! consists of all action a from some

period on, then no element in P, can actually be a limit point.

Claim 22 [f for all Py € Puuster, Ps(b) & Pauster- Then no Py can be a limit point.

Proof. For a cluster point P, and a B which is sufficiently close to P;, by claim , Qs
must be a.
AH
If 5231{ > 0, then

péﬁ1 B péH ¢(G‘AH; xti) pr
pity P ¢lalBH, zy) — pP

Similarly, P 1 is sufficiently close to a different cluster point Py(a), Qs 41 must be a as

AH
Pisio .
well. So -4+ must be even bigger.
ts+2
k

Following this logic, P, can never return within a neighborhood of P,. This contradicts

that P; is a cluster point
If p;"gH =0, then = c¢ > (0. By claims|17] and , xs must be strictly bigger than z.

¢(a|BL,xs) < 1. Therefore,

It is dlrect to verify that (alBH.ay)

ptB}Cil pfSCL ¢(@|BL7 xti) pSBL

pifty  pE o(a|BH,xy) ~ pbH
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BL
So 5 t can never return to c¢. This implies that P, can never return within a neighborhood
t
of P; again. m m
)\AH )\BL R . . BH
Merely {57 + $hw — 0 doesn’t guarantee that A, is eventually close to the axis A%,
t t
\BH M and

The ratio could decrease to 0 just because that increases much faster than

ABL. We need to rule out this possibility.

Lemma 23 If

(1) AP (5 [A) = +o0;

or

(2) private signal is bounded (5 < 1), \BE(5S1|A) doesn’t approach +oco, but It such that
APH(DSA) > 5= for all t > 1.

Then 3 sequence Ty, € N, such that

¢>(b\BL,1)
im O _ £, = 10g S eam) .
oo 2 Ja— ¢(a]AH,1) ¢(b|BL,1) "’
Ti=too (T};) log SBLL) T log S| AH,1)
$(alAH 1)
lim 20— fy = 108 4(upL1) (25)
Tyrtoo (T})2 707 log SEALD S([BL 1) -

(
SBLL) T log S| AH,1)

Here #a counts the number of actions o € {a,b} from period Ty, to period Ty + (Ty)?.

BL
14+ 20
Proof. If (1) holds, then z;(p%*|A) — 1. If (2) holds, then z; > —s—tr—— for all £ > 7.
kg +sm 5
>\t At s
Thus, liminf, , . x; > 5. In both cases, Vk € N, there exists T,c1 such that x; € (5 — %, 1] for
allt > T} — 1.

We can verify that in phase I,

AH

A
0 :b@@ > (). (26)

Here §(-) is the same function as defined in lemma [16]
We have following claim: Vk € N, 3T}, > T} such that

MAH 1 G(b|AH, st d(a| AH, 5%
o € 56— paai) g A AL @
A k' G(|BL,st,) "\ 6(a|BL, 5t

where s = argmingc;s_1 i((z“gg’g, and s;* = argmax,c;_iq) ﬁ(@'ﬁg For notation

convenience, from now to the end of this proof, we shall just write [Ib, ub] for the closed
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interval in 271

In this paragraph we prove the above claim. Let ¢; = min{t > T,€1|¥TZI > §(x¢)}. Then
t

t1 < +00. Otherwise, ;\Z;*Z < §(zy) for all ¢ > T}!. By construction rule , we must have
& — ¢ for all t > T}}. Then

A ¢(a|AH, ;)
1 1 1
o8 Og )\BL Z on S0 s &(a|BL,a7)”

T +1

¢(a|AH,x;) AAH
By claim 35|, log W is bounded above 0. Therefore, 35z — +00 as t — 4o00. However,
this contradicts /\W < §(zy) for all t > T} since F(x;) < F(1) < +o00. (Recall F(-) strictly

increases). Then we must have

)‘?;H _ /\éljl ¢(a|AH, x4 1)
)\gL Agel ¢(a|BL7 xtlfl)
¢(a|AH7 xtlfl)
< _
>~ S(xn l) ¢<G‘BL, mtlfl)
¢l AH, 5;°)
¢(a|BL, s;*)

< 3(1) (28)
Here the first equation and the first inequality follow from the definition of ¢;. The second
inequality follows from that z;,_; € (5 — 1,1] and that §(-) strictly increases. Furthermore,

we have

)\QH )\ﬁH ¢(b|AH7 xt1)
/\BL (

\BL b|BL, z,,)
— 1 ¢<b|AH xt1)
= S G0IBL )
_ 1. 6(b|AH, s%,)
O TRl 2

Here the first inequality follows from that %

follows the definition of ¢; and that § strictly increases. The third inequality follows from the

AH

definition of s%,. Combine inequalities 28 and a, we have i’;;L € [lb,ub]. Let T, =t;. We
31

< 1 (see claim. The second inequality

A AH
have the following inductive argument: for all ¢ > T}, if ;\\i; € [Ib, ub], then i:BE € [1b, ub).
The inductive argument can be proved as following: there are two cases:
A g(a|AH 1) P(alAH,s3%)

)\ t+1 — o e
1. )\BL < Xy, then )‘tB+Ll = )‘tBLm = 3(1)¢(a|BL,sza).

30



A ¢(b|AH @) — 1\ ¢0lAHs))
/\iBL #(b|BL,xt) > (s - E) ¢(b|BL,sg:)-

AT A
2. \BL > T, then NBL —
t t+1

So claim [27] is proved.

Furthermore, we have

AH
)‘TkJr(Tk)? . )‘%fHTkJr(Tk)?—l ¢(%‘|AH7 xz)

AgkL‘f‘(Tk)z N )\%L e ¢(aZ|BL’$’>

€ [Ib, ubl; (30)

SO

Tp+(T3)%—1 ¢(QZ|AH, ZL'Z) b ub

IT. —, . 31
=T ¢(cu| BL, z;) b ) (31)
We can make left-hand side of [31] slightly bigger and obtain
(¢<a’AH7 Slta)) (;f:;Q (¢(b’AH7 Sltb) ) (;«1132 T > & (32)
¢(a|BL, s3) o(b|BL, s3?) — ub’
We can make left-hand side of [31] slightly smaller and obtain
2
(CLAH ), gy SOIAH, ) 2 b (33)
¢(a|BL, s%,) #(b|BL, s,) b

Now taking logarithm on both sides of 32 and [33] and let & — 400, T} — +00, we have

Cga . g(alAH,) Cga. . o(blAH,1)
lim sup log + (1 —limsup —<) log ———=) < 0; 34
e e 8 aemr ) T T ) e elBL ) o
and
o #a . ¢(a|AH, 1) . #a ¢(blAH, 1)
1 f 1 1-—1 f log ¥————-—2) > 0. 35
fmint s los gy (1 dminf ) log Sa ) > (35)
Combine above two inequalities, we have
$(b|BL,1
liminf 7L > log ¢<(”'|AH71)> > lim sup #a
- 2 = b(a[AH,1) o(b|BL,1) = 2
Ty—+oo (T) log ¢((a||BL,1) +log ¢((b||AH71)) Tps+oo (Tk)
. 4o . log SFiART)
So limygy, 4 o0 e exists and equals to f, = —mmry—spmr - ™
k log SarBr1) 1108 Geam.n)

Now we use above lemma to prove that we can always push society’s belief sufficiently

)\BH

close to axis— in phase I.
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Lemma 24 In addition of sufficient condition[18, if

log ¢(a|AH,1) —log ¢(a|BL,1)  logé(a|AH,1) —logd(a|AL, 1)
log ¢(b|BL,1) —log ¢(b|AH,1) = log¢(b|AL,1) —logp(b|AH, 1)’

then there exists a sub-sequence t;, such that
A= 0, AP = 0.

Proof. Assume the opposite. Then 3 gy such that ||(AAH A\BE)|| > & for sufficiently large ¢.
Since we assumed sufficient condition , lemma |16 implies that igz + % — 0. Therefore
we must have AP# — +oo. This is equivalent to x; — 1. This satisfies condition (1) in
lemma 23

Let t, = Ty + (T})? where T} as constructed in lemma . Then

o(a|AH, ;) o(b|AH, xy)

AH _ AH A
M = M Mo g3 o Mot G5aL 7,
I d(a|AH, z;) o(D|AH, x,)

< Hlleegaar, @)” “VGOIAL )

(alAH, 1), o G(O|AH,1 — ) o0, (Th)?
= [( ¢(a|AL, 1>) ( o(b|AL,1 — %)) :

(37)

} is the largest possible increase of A, Here the last
$(b|AH x)
’ $(O[AL,)

monotonically decreases on (1 — ,1) and (3) for big enough £k, ‘i((ZEIL{ m)) monotonically

increases on (1 — £,1). Condition [24]is equivalent to that [Z((Zhﬁillﬂf“ I ;&hﬁléllﬂfb < 1. So

for sufficiently large T}, the big term with the bracket in [37]is strictly below 1 and converges
to [¢(a|AH,1)]fa [¢(b|AH l)]fb We have

— ¢(a|AH,x) ¢(b|AH,x)
Here ¢ = max,co11{ S(elALs) " BUIAL )

inequality follows from (1) z, € (1—1,1] for t € [Ty, T+ (T%)?], (2) for big enough k

#(a|AL,1) #(b|AL,1)
: AH,1);1a @O AH, 1) 5y (1)
1 )\AH ) < 1 Ty ¢(a’ i a ) b )
Tymoo Tt (T)? = 18 € {[gb(a|AL,1)] [¢(b|AL,1)} J (38)

So limp, o0 )\%ﬁ(Tk)Q = 0. We can similarly prove limp, A?LHT = = 0. In fact, if z; — 1,
then

Tlgnoo )\T T2 = hm )\T (1)

Recall that in phase II we use a long sequence of action b to push society’s belief from a po-
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sition close to axis-A\P# to a e—neighborhood of the confounded learning. As long as in phase
II, M \BL stays negligible, the belief dynamics is similar to the one-dimension belief dy-
namics where A ABH are zero. In this sense, construction in phase I turns the problem from
three-dimension into (roughly) one-dimension. However, we should notice that the (roughly)
one-dimension dynamics in phase II is still different to a true one-dimension dynamics. We
need to guarantee that AM# \BL stay negligible in entire phase II. To guarantee A\?” stays

negligible, we must start phase II with super small AL, However, if A\B# (bgl|A) — 400,

then this super small \B" \BH

comes with a cost of a super large , and hence a super long

sequence of actions b to reduce A\BH

ABH

close to mpy. Since observing action b always increases

ABL can outweigh the super long

. It is not clear that whether the super small initial
sequence of actions b so that APF stays negligible in phase II. We deal with this situation
separately in proposition . If in phase I, we can arbitrarily shrink Al without getting a
super large AP . Then it is easier to guarantee that ;\\Bif, stays small. After all, fix a learning
environment, a A?# bounded from above implies that the number of actions b needed in
phase II is also bounded from above. Hence the increase of ;\Bif{ in phase II is also bounded
from above. Therefore, we can always control the largest value of /’\\Bif, in phase II by choosing
a small enough initial value. In lemmas and proposition |30| we deal with this easier
case.
From the next proposition to proposition we all holds the following assumption:

\pir 0B H,357)

I \BH

strictly increases in ABH op \BH ¢ (— 2 L)
B(b]A )
"NBH 1

Assumption 25 il

cn |

This assumption says that the belief updating rule of \P¥ is strictly increasing if A7 =
ABL = 0. Then if AP¥ is above (below) 75, after seeing an action b, AP (b) cannot jump
to the other side of 73, since 7} is a fixed point of the belief updating rule. The following
)\AH )\BL

lemma generalizes this into the case that is negligible.

Lemma 26 For any closed interval [b,b] C (2 5> T, there exists > 0 such that

L SOBILY)

0,£° x [b,b : 39
Similarly, for any closed interval [b,b] C (7, 1), there exists € > 0 such that
2 BH¢(b|BH A) .
— > 4
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Proof. We only write out the details of the case that A € [0,&]?x [b,8] C [0,&]* x (2, Thp)-

¢(b|BHA x
G(b|AL,A) at A

We compute the Taylor expansion of = (0,0, \BH) with Lagrange remainder

as following:

¢(b|BH,A)  ¢(b|BH,A)
¢(b|AL,A)  $(b|AL, A)

0 __¢(b|BH,A) |, \AH
AH \BL 8/\;}[ f((lf\‘gflﬁ)) . AH \BL
= ()‘ ;A 70) ONBL ¢(b|AL,7A) |K + (/\ ;A ’O)H‘]\ ABE
o SUIBHA)| 0
ONBH G(B[AL,A) | A
)\AH

—\BHNAH L \BL 9 (b|BH, x)
RS T T UV LR AJSL

)\BH

Here A=c¢(A—A)+A,0<c<land7= - We can verify that A €[0,€]% x [b,D] and

T € [b+17 bil] - <§7 xBH)-

With assumption that F4(s), FB(s) are twice continuously differentiable on (s,3) (see

: bBHx)| - : -
assumption , we have that 2 (2((1)" AL; |z is continuous in T on [1-%1;7 = 1] Furthermore, for
A — AH .\BL \BH e ABH 4 \BL ABH b
all A = (e eAPR AP we have that T = AT BT BT 2 TPTTE 2 Bre and that

L _ B 5
7 < 1+)\B§i€ < 1;5:2 By choosing ¢ < mm{ =2d — 1,7y — b}, we can guarantee that

i € (s,xpy). Thus Hy; is continuous on A € [0,5] [0, D).

T 0 ¢(b|BHz) _ : 9 #(bBHz) | _
Let M = argmax_ el 55] 32 GOIALS) |z M argmin, o 5 5; ¢(b‘AL7x) |z and N
T _\BH\AH | \BL
argmaxy (o ¢2 x b7 H;;. We observe that — (1+E)b(1+b)€ A(1+/\>\BH+))\ < (1+b 25 Then we have
b|BH, A b|BH, A M Mb
¢( ‘ ) ) ¢( ‘ ) ) < ax{ == }§+max{4N,0}§2

o(b|AL,A) — $(b|AL,A) — (1+0)2 (1+0)(1+b)
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Furthermore, if A € [0,£]% x [b, b], we have

(s OOIBH, A)

d(b|AL, A)
s OOIBH, 3rs) Y 2)
< ¢(b|AL7 )\éfl}il) + A (max{(l —i—l_))Q’ (1+5)(1+b)}€+maX{4N,O}f
OB T )
< b S([AL b+1) + b max{ (1+0)2 (1—|—5)(1+[_))}€+max{4N’ 0}¢

which is smaller than 7}, for small enough £. m
The following lemma says: if society’s current belief A is sufficiently close to axis-ABH,
and AP is somewhere between s and 7%, then a sequence of actions b can push the society’s

belief into the e—neighborhood.

Lemma 27 With assumption 25, if
Vy > 0,3Ap s.tor, > 20, AﬁH <7, )\%L <7, )\%H <7mhy —€/2 (41)
then there exists a vy and ty such that

E *
)\?r\f{+t0({b}t0|AT'yo) 2 A$7L+t0<{b}to|ATfyo> A?f—l—to({b}t0|AT’yo) € (T‘-BH - 577TBH]

In other words, if we can push society’s belief arbitrarily close to axis—A\BH while keeping
NBH below 7%, then we can always push the society’s belief to a proper position, from where
to actions b leads society’s belief into the e—neighborhood.

Before the formal proof, let us try to explain the intuition that the lemma is true. Recall that
)\BH+)\BL
1+)\AH+)\BL+)\BH .
put a lower bound on AZ", if MH NBL < ~ for a super small . The smaller the « is, the

xr =

After an algebraic transformation, we can see that x7 > x¢ actually

370

closer the lower bound is to {*2

the closed interval [(1 — d) ™%,

Now, conditional on seeing an action b, A# moves up. If AB# hasn’t moved above

. We can roughly think A\?#’s starting position is within

7TBH — /2] for a d close to 1.

sy —€/2, and M \BE gtays negligible, then A is bounded away from confounded learning
A*, hence each observation of b multiplies A*# by a number bounded below by n > 1.
Therefore, the number of actions b needed to push AP# above 7% — €/2 is bounded above

by a finite number N.
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#(b|BL,z) -
_¢(b|ALx)
within the N steps, AP’s increases is also bounded above. Therefore, by starting with a
)\BL )\BH

Because is bounded above as well (since it is continuous in z on a closed interval),

moves above 75, — /2.
o(b|AH )
¢(b|BH )
cannot move above 75, because of the

stays negligible until
)\BH

sufficiently small )\%L, we can obtain

/\AH

stays negligible to since < 1 always holds.

)\BH

We automatically obtain that

Lastly, by keeping A, APl small enough,
monotonicity assumption So we obtain the conclusion of this lemma.
Proof.

For each Az, we construct an auxilliary process A as following:

‘/N\Tw = AT’Y

< b|BH, zdowm)

A\BH _ )\BH¢< L V> T
t+1 P(b|AL, gdown) =

)\BL S\BL bl B L. gdown

g]alf - NtBH QS( | ’fdown) 7Vt 2 T'W

AM AP o(b| BH, T7"")

ABH NPHG(BIBH, 1) T

own b|BL,x own . b|BH,x
Here ¢ = ArgMaX ¢y 5y —sdown] %, xd = argmin ¢, o, —sdown] %, and

§9own is a small positive number defined in claim [37, This auxiliary process is constructed

BL
;\BH and AP < )\BH . In this way, we could use auxiliary

values AL, \BH to control the real values ABL and
We have the following claim: Vef*™ € (0, — 2 and Vd € (0,1), Iy > 0 and t; such
B

\BL
with the purpose that ;\:ﬁ >
ABH

g—€/2
that
. )\AH ~$L
BH 0 d . vott d
Az, > (1= d)l—o /\BH < " )\T it > T — €2 = — < g (42)
0 T’yg“l’tl

In this paragraph we prove the above claim. First, we can verify that z7. > x¢ implies

that A7 > —v + ;%2 By choosing 7 < mln{d (1 — d)7%-} , we can have
AH
/\%H > (1 —d)%2- and /\ﬁH <y < (1l —d)= Then /\BH < c%own Second, that Jt,
such that
Ag‘i"’tl down
)‘T +t1>7TBH_€/2; T<0E . (43)
Tyytta
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This is equivalent to: Jt; such that

<b|BH, zdown) .

1 *
> —e/2;
( O(b|AL, zlown) ) T — €/
BL —aown
A ( (b|BL d ) )t1 < Cdown
)\BH <b|BH —down) E )
which is further equivalent to
log Cdown log )\ 1 1 10g<7-( _ 5/2)
Ty BH BH
10 (b|BL doum) -+ lOg )\T»y |: (Z)(b|BL,Ed°“m) 10 ¢(b|BH,£d0wn) ] 10 (b|BH xdown) > 1(44)
& 5(b|BH z%") ol BH ) 08 GR[ALzTwm) 8 S(bIAL zTown)

Since )\BH € (1 —d)i%%-, mpy — €/2), as v decreases, the left-hand side ofﬂ Adf increases to

(™)

—+00, S0 t1 certainly exists. From here to the end of this proof, let’s choose a (¢ for

each cfovn € (0, W%;/_za /2) For notation convenience, we write 7 for yo(cv™).
Intuitively, as AP increases slower than A7 AP must move above Thy — €/2 before
period ¢;. We claim this intuition is true: 3t € {0,1,...,#} such that A\PH > 7% — /2.
In this paragraph, we prove the above claim. Let us use [;, as an abbreviation of index
set {0,1,...,t;}. We first assume that V¢ € I,;, \B7 < 7%, — /2. Under this assumption,

we have following inductive argument: V¢t € I, — {t1}, if

/\BL )\BL
T+t Ty, +t down
\BH = “BH )\T’y +t = )‘T ottr LTy +t € (w0, 251 — 0 ] (49)
T+t T+t
then
)\BL )\BL
Tyy+t+1 Thyy+t+1  § down
\BH = \BH /\T JERAE RS )‘T oHt15 TTyg 41 € (w0, xpH — 09" (46)
Ty +t+1 Tyy+t+1

The proof for the inductive argument is as following:

ML i -~ A% 1 o(b| BH, 7% > M.+t O(O|BH, w1, 11)

. 47)
—d Z \BH (
AIT3H+t+1 )‘%Hﬂ (DAL, ") /\T70+t P(O|AL, z7, 1)
S\BL >\BL
Here the inequality follows inductive assumption /\?,3: > /\?git, T, 4t € (w0, vy — 6%W]
i
O SlBLaY)

and the definition that z%v" = = ArgMAX ey oy sdown]

W. The proof for )\?fj+t+1 S
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N\BH o1 1S similar. By assumption, )\T il S Ty —€/2. From Clalm . 2/ and the definition

A? +t+1 )\EL +t
of ;\B -, we have —15 < 5ot < cdown Therefore, TT, +t41 < T 17— 0% following claim
T70+t+1 Tryg+t1
37} Finally, rewrite 7, 1441 = T L . Then following inductive assumption
BH
AT, +t+1+ T’70+t+1
1‘“‘&4"7 +t+1

that x4+ € [z0, vpr — 0%°%"] and the reasoning in , we have z7, 1141 > o1 44 SO
T, 41 € [0, xpH — (5d0w”] We also verify that inductive assumption holds for ¢ = 0.

Following the inductive proof, we must have )\T St )\T o +1,- However, in claim 42) we
have )\T 41, > Tpy — €/2. This contradicts the assumption that AN <y —¢/2 for all
tel,.

Now let top = min{t[\;" 4t > Tpy —€/2}. Then AEH 4t S mpy — /2 for all ¢ €

{0,1,...,to — 1}. The above inductive argument still works for t € {0,...,t9g — 2}. There-

S\EL +tog—1 A?L +tg—1
fore, we have that c&wn > —Jot0" ~ 1070 and that )\T tto—1 < Thy — /2. Further-
>‘Tn,0+t071 Tyg+to—1
NAH A? +tg—1 ?H
more, since observing action b always reduces {zm, # < /\g}} < chow”. Therefore,
7o tto Y0

)‘TWOthO 1 )‘Tw o1 < B (Thy — €/2).
To summarize, up to this point, we have proved that: Vc&*m e (0, *Li/z) and Vd €
TBH
(0,1), 3 v € (0, min{d= chow"(l —d)2-1}) and to(o, T,) such that

1—x¢

Zo

1_—%,7TBH —e/2]. (48)

Az, a1 € [0, (T — €/2)] x [(1 - d)

By choosing d small enough, we have [(1 — d){2%-, 7y —€/2] € (%, 7hy). (Recall 2o > s

is necessary for learning). Following lemma , we can find a ¢%%" small enough such that
)\AH AH
BH BH +t AT
Aty < Tpy- Therefore, )\Tq0+t0 € (r5y —€/2,m5y]. Furthermore, we have ﬁ < /\g”,f; <
Y0 Tt0 Y0
BL A
+t T +t9—1 S(O|BH,z1, 410-1)
Cdown So )‘T T o < 6/2 as IOIlg as ¢ down < / Flnally, ’Yo 0 __ /\B’Y}(} 0 T Yot~
T’Yo""fo Trg+to—1 #(bl 7xT»y0+t0—1)
down ¢(b|BH,z0) ¢(b|BH x) .
CE " GAL o) - 1iere the last inequality followmg from that 77725 monotonically decreases

on (zg,zpp). (See result 2 in clalm . Therefore, A7 +tg < €/2 as long as cdown <
¢/2 $(b|BH,zo)
w17 G|AL,z0)

To summarize, we use c&“" to control the largest possible value for M \PE in phase
)\BH

down

II. As long as "™ is small enough, must increase but cannot jump above 7}, after

seeing a long sequence of action b. Furthermore, by choosing v, sufficiently smaller than

cdown we can guarantee M7 \BL < cdown ip phase I1. m
Then next lemma is very similar to the previous lemma. The only difference is that we

approach the confounded learning from above.
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Lemma 28 With assumption if
Vy > 0,3z, s.t. A <y, ARE <, M € [mhy + e/2, 371 ¢ (m, F) (49)
T —S

then there exists a vy and ty such that

9 9

Ao ({0} 1A, ) < ATy (031, ) < 5 A2 ({0} I, ) € [mmi, Ty + 5)-

In other words, if we can push society’s belief arbitrarily close to axis—A\BH while keeping
NBH qbove 7%y, then we can always push the society’s belief to a proper position, from where

to actions b leads society’s belief into the e—neighborhood.

Proof. For each Az , we construct an auxilliary process A as following:

AT’Y = AT“/
b|BH, z"P)
\BH )\BHQS(—’— Vit > T
t+1 (b|AL,£uP)7 - L
ME M GBBLTY)
BT XPH (0| BH,T7)
YAH YAH
3BT T B G(U|BH, 1)
Here 7% = ArGMAR e[z +oup 1] %’ = ArgMaAX pe [y pr+5ur,1] %7 and 0 is a

small positive number defined in claim [36]
We have the following claim: V¢ € (0, min{ e/2 2 1), 3o > 0 and t, such

e (TBH+E/2)’ TRH+E/2

that
A o
N . ~o 1 up
)\Bfl <cE,)\T vty <Tpg +e/2 —— <cp. (50)
Tyo Ty tha

In this paragraph we prove the above claim. First, by choosing v < ¢ (7 +¢/2) , we
AH

AT . . . .
n have 5 < ¢, Second, we can verify the existence of ¢; is equivalent to
can have 77 < cp ,
Ty

log ¢ — log AZH 1 1 log (s +€/2)
Ty BH BH
log COBLT™) +log Az, (lo S()|BL7") +1 (| BH.zv p)) T g SOIBHZ) >1 (51)
& S(lBHz?) s BHz7) 08 GO[AL.a"P) & “GOIAL.")
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. BH N ~BH . . .
Since Az € (Thy +€/2,A ), as v decreases, the left-hand side of [51] increases to +oo0,
so ¢ certainly exists. From here to the end of this proof, let’s choose a y(cg ) for each
i € (0, min{— (;B/ 12{ 75 WBZ/EE 731)- For notation convenience, we write o for 7o(cy).
We claim this intuition is true: 3t € {0,1,...,¢;} such that A7 < w5, + £/2.
In this paragraph, we prove above claim. Let us use [;, as an abbreviation of index set
{0,1,...,t1}. We first assume that V¢ € I,;, \P¥ > 7%, + /2. Under this assumption, we

have following inductive argument: V¢ € I;, — {t;}, if

)\BL )\BL
Tyy+t Tyg+t .
)\BH Z BH /\T,y +t = >\T0+t’ (52>
Tyy+t Tyt
then
)\T +t+1 )\T +t4+1
70 Y0 /\BH )\BH (53)
)\BH - BH Try +t+1 - Tfyo—‘rt—‘rl’

Ty +t+1 Ty +t+1

The proof for the inductive argument is as following:

S‘%ithJrl B 5\:%0+t ¢(b|BH,z"P) S >‘T o+t (0| BH, 27, 1+1)

> : (54)
)\?HHJFI )\?H+t (b|ALa —up) A?g-ft ¢(b|AL7 me-i—t)
. u :\g S+t )‘? +t .
By assumption, )\T ot > hy +€/2. Also from claim , cp > 5T > XBA - Following
Ty+tq T+t

claim T, +¢ € [xpg + 6", 1]. Then the inequality follows this, the inductive assumption
M Mo b|BL
/\;:,%: > /\;}g:, and the definition that 7 = argmax ¢, ,, 5u 1] %. The proof for

)\Tvo g1 2 )\T o +t41 is similar. We also verify that inductive assumption holds for ¢ = 0.
Following the inductive proof, we must have /\T ity 2 )\g 4,- However, in clalm . we
have )\Tm +t, < Tpy +€/2. This contradicts the assumption that )‘Tw Ve > Ty +€/2 for all
tel,.
Now let to = min{t|\ZH o+t < Tpy +€/2}. Then N 4t = Tpy + /2 forall ¢ €
{0,1,...,to — 1}. The above inductive argument still works for t € {0,...,t9g — 2}. There-

S\BL )\BL
fore, we have that ¢z > ;\?{r“ > 0% for all t € {0,1,...,to — 1}. By definition of #,
Tog+t1 T«,0+t
)\T 2 mpyte/2forallt € {0,1,...,tp—1}. Use claimwagain, 1 g4t € [T +0"P, 1] for
. b|BH, ~BH
allt € {0,1,...,to—1}. Since % < lforallz > wpy, wehave A\ZT, | < AZT <A
Furthermore Moot Miyrgon < . Therefore, \aH A\BE < e\t
’ A?%tho 1 A%;;thofl k- g tto— 1) Ty o —1 E
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To summarize, up to this point, we have proved that: For all small enough cy', 3 o and
to(v0,Ty,) such that

up~BH " ~BH
Ar sto-1 € [0, g X X [y +/2, X7, (55)

. ~BH -
From assumption , we have A < °=. So we can use lemma to find a ¢} small

enough such that )\%’z 110 = Tpy- Therefore, )\%Z +to € [Ty Thy +€/2). Furthermore, we

)\AH )\AH )\BL
2 . T~ +t
have —ete < 00 < ¥ Go M < /2 as long as ¢ < — e/2__ Finally, —59—2 =
)‘Tvo+t0 )‘Two E Tootto = / B Thute/2 ’ )‘Tw0+to
ABL #(b|BH,z ) u
o +Hto—1 T Ty +19—1 up ¢(b|BH,xp+6"P) : : :
ey = BHT. 2 Here the last inequality following from that
A%I;tho*l (bl AL, w1 +t5—1) E ¢(b|ALxpp+uP) q Y 8
o(b|BH,x)

monotonically decreases on (zpy,s). (See result 2 in claim. Therefore, )\%LO o <
e/2  ¢(b|BH,zpH+3"F)
nppte/2 (BlALzpr+ovP) "

B(blAL,x)
£/2 as long as ¢ <

Lemma 29 If D < 5 and sub-sequence t such that

1—35°
~BH
APH (D A) < X7
Then
A (05 A) = 0 AL (b5 [A) — 0
and
xtk(hg:m) > xq for sufficiently large ty.

Proof. Following lemma [16], we must have

A (b5t 1A) | APE(hi |A)
ABH (i A)  APH (B2 [A)

If )\BH(th,HA) < XBH, we must have
A (05! 1A) = 0 AZE (b A) = 0

That xtk(hg: |A) > ¢ for sufficiently large t; follows directly from claims |17 and . |

Combine previous three lemmas, we have following proposition:

Proposition 30 If D < 5 and sub-sequence ty such that

1-5’
~BH
APE(BEA) < X7
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Then 3 a finite sequence hg such that
IA(DE1A) — A7 <.
—BH —
Proof. If 3\ < %, and sub-sequence #; such that
~BH
APE(BEA) < X7

Then following lemma , Vv > 0, 3T, such that either (1)zp > :UO;)\ﬁH < 7, )\%L <
75 /\%H < Ty — €/2; or (2) )‘%VH <7 /\%L < %/\%H € [Thy — €/2,7py +€/2]; or (3)
M <y, MEE <y, M € [y + 5/2,XBH]. In case (1), we cite lemma in case (2), Ap,
is in the e—neighborhood; in case (3), we cite lemma [28 =

If there is no such A < ==, there are two possibilities: either (1) APH (h"|A) — +oo;
(2) ABH(h{*|A) doesn’t approach +oo, but 3f such that AP (h1[A) > == for all t >
provided that private signal is bounded. Following lemma [23] in both cases we have a sub-
sequence Ty + (T;)? and we know the limit action frequency in this sub-sequence. In the
next proposition, we make use of this limit frequency to construct an upbound PN 1%5,
and show that we can push A?# below the upbound, while keeping A and A\B% arbitrarily

small.

Proposition 31 If (1) AP (h1|A) — +oo; or (2) private signal is bounded, NP7 (h1|A)
doesn’t approach 400, but It such that \PH (§1|A) > %= for all t > t. Provided that

log ¢(a|AL,3) —log ¢(a|BL,5) _ logp(a|BH,S) —log ¢p(alAL,S)
log 6(b|BL,5) — log 6(b|AL,3) ~ log b(b|AL,3) — log d(b| BH,5)’

(56)

then we can find a finite upper bound PP and a finite sequence l‘)tc(;2 (v) for each small

v > 0 such that

1-57

Zo H

—B
(L4+7) < MPH(h2|IA) < X7

MO IA) < 3 APE (0 IA) < i -

Let us first sketch the strategy of proof. Condition [56| says, there exists a T close to 3,

and a positive number 7, such that

r 2 _ r 2
e (GOBH D\ e BLT)\ T
T+ \ $(b| AL, 7) AT G (b AL, T)
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~BH —BH _ _

as Ty — +o0o. Define A~ = = ;. For ¢}¥ small enough, \ = = < 7=. By the
BH BH

A AT, +(Ty)?

T E

assumption, eventually moves close to l—fg So we could find a big T}, such that

\BL #(b|BL,T)

~BH
above A and T+ (T)2 \ $([AL7)

[r(Tk)*]
> super small. Then z7, (7,)> must be above 7. We

further verify that x > = implies

¢(b|BH,z)  ¢(b|BH,z) ¢(b|BL,T) ¢(b|BL,x)
o(b|AL,T) = ¢(b|AL,x)" ¢(b|AL,T) =~ ¢(b|AL,z)

So
and /\ )21 Stays small for that
AT (12 (%) o > A2 ()2 (%) AT (T2 (58)

—BH .
If we also have /\%Ii(Tk)Z .1 = A, then by a similar argument we have

s (OOBHT)\?
T ( GO[ALT) ) ~ Merimese )
and that
o (SOBLENTET L (6BIBLE)N (60)
I G(b AL, 7) % G(b] AL, T) T

We can proceed inductively and see that AP must move below Y at a period ty before
period Ty + (Ty)? + [r(Tx)*]. Otherwise,

BH

A, (61)

v

o (SOBHEN\TET
Typ+(T)? o(b|AL, 7) T +(Th) %2 ++[r(T1)?]

which contradicts that \2H

we still have

Tot(To)2-+[r(T)2] L€ small for large Ty. Furthermore, up to period tg,

. (¢(b|BL,f)) [r(T%)?] o \BL ( (b|BL f)

Tip+(Tx)? <b|AL CL’)) )\t0+Tk+(Tk)2 <62>
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So \BL

to+Tk+ (T
Proof. Let f, and f; being as defined in 25 Then condition [50]is equivalent to Jr > 0 s.t.

)2 stays super small. Below we have the rigorous proof.

¢(a|BH,5)\ 1. (P(b|BH,5)\ 1, ( (0| BH,5)

( ¢(a|AL,3) ) (¢(b|AL,§) ) ( H(b|AL,S) ) L;
SaBL3) 1. SOIBL,3), o SIBL3) .
(¢(a|AL7§)) (¢(b|AL,§)) <¢(b|AL,§)> < 1. (63)

Let us pick such a r and fix it through this proof. Since ¢(b|BH, z),¢(b|AL,x), p(b|BL, x)

are all continuous in x, we could find a ¥ < s such that

(¢(a|BHa§))f (¢(b‘BH’§))fb< (b|BH, w)) 1:
¢(alAL,S) »(b|AL,S) o(b|AL,T) ’
(b(a’BL,E) f ¢(b|BL7§) fo ¢(b|BL,$)
(¢(G|AL,§)) (¢(byAL,§)) (¢(b|AL,E)) < L (64)

We also pick and fix a T throughout this proof.

As argued in lemma in both cases (1) and (2) , Vk € N, 3T € N, s.t. z, € (5 — %, 1]
for all £ > T}. In particular, let us choose T} as constructed in lemma [23| For each k& and
T}, we can construct an associated auxiliary process as following: Let ATH(TW = Aq+(13,)2,
for each t € {T), + (Tx)? + 1,..., T + (T)> + [7(T%)?]}, define A,’s evolution as following

YAH _ AH¢<b|AH f)
NA =N o(b|AL, :16)7
b|BL,
T AfL¢§ ik
sen _ seu90|BH,T)
)‘t-‘rl - t (l f)

The idea for this construction is to use A?% to control how fast A" can increase; and use

MBH to control how fast ABH can decrease.
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For each k and T}, we have that

B . (Tw)?
s O(JALT) _ \pr ¢(b|BL,T)
OIS T 6 (b BL, 7) = "I 9(b] AL, 7)

_ ABL(HTH(Tk)z_mw?wBL,xt>) o0BL7)\""
T t=T}, ¢(f)tcl|AL7$t) ¢(b|AL,f)

i _#b_ ‘e _#a_ SN (Th)
o o (QGIBL s\ O (lalBL,si) | U (6(bBL,) (65)
= T\ (b AL, s ¢(a|AL, s ¢(b|AL,T) ’
vefi—1.1] %, a € {a,b}. Here the first inequality just takes care

of the case that r(7};)? is not an integer. The second inequality follows from that z; €

(s — %,1], when ¢ > T,. Recall that i%i\féi; = iEZ‘\fig for z € [5,1]. So we have, for

sufficiently large k and T}, the big term within the curly bracket in [65]is sufficiently close to
#(a|BL,) \ fa [ ¢(b|BL3)\ Jo ( (b|BL,T)\" S .
(¢(G|AL7§)) (qb(b\AL,E)) (¢(b‘AL,§)) , which is strictly below 1 (see .

Similarly, for each k& and T}, we have that

where s;* = argmax

BH
>\Tk+(Tk)2+fr(Tk)21
o) T2 )\ T2 2\
= T\ B(b|AL, s ¢(a|AL, s3%) ¢(b| AL, ) ’
where s;* = ArgMax,efs 1 ] %, a € {a,b}. (Here we use the same notation as in

just to avoid too many notations. ) For sufficiently large k& and Tk, the big term in [66| is

sufficiently close to ((Z((Zl‘ilzg )f“ (%ﬁ“ﬁfg )fb ((Z((Zﬁgg )T, which is strictly below 1.

Now choose and fix a proper k, we have

: BH PR E \BL _
0 AT @2 ez = 05 M AT (g2 ey = 0-
Arbitrarily choose and fix a v > 0. For all
. £/2 £/2 0% -7z 1-% 1-3
0<cy < —
‘e mm{ng Fe/2 Ty +£/2) 4 1 SOALD T 0 g —

¢(b|BH,1)
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define 27 = 2. For any 7, let us choose a T} such that
‘E

11
x

N o ey <V

ALz < Apa:
)\AH( )

T+ (T} .

BH <Cg;

T+ (T%)?

~BH
)\Tk+(Tk s >N\ . (67)

 1es ~BH - ~BH
Here because ¢ < £=% — =2 we have A\ < %=. We also have A > 7 always holds.

up 0l 1-7 : up b
Moreover, Cp < —SGALD 3 1mphes that Cp < SPH SUIALL) -
¢(b|BH,1) #(b|BH,1)

We claim: for the choosen T}, there exists a t € {T}, + (T}.)2, ..., Tx + (Tx)* + [r(T3)?]}

. . ~BH
(abbreviate this index set as I, from now on) such that AP# < A7, Assume not, then

Vt € Ip, NPH > 3 . Besides, Vt € I7,, we have jﬁZ < A?’:{+(Tk)2 < ¢ since % <1
always holds. We must have z;, > 7 for all ¢t € I, followmngs(fﬁ)nlar argument as in [69]
Because T = argmax ¢y % = argmax,cz % (See claim , we could
build up following inductive argument for all t € I, : that )\BH > \BH and /\BL > ABLimplies
APH > APT and APK > APE. The proof is direct: AP/ = APHSGEAE > \PIHECIERE) >

)\BH¢ b|BH, l't)
o(b|AL,x¢

inequality follows from that z; > 7 for all x € Ir,.

= \Bl ‘1. The first inequality follows from the inductive hypothesis, the second

This inductive argument leads to a contradiction:

SXBH —BH
X < N i) < M e < A

So there must exists a ¢ € I7, such that \P# < N Let ty = min{t € Iy |\PH < XBH}.

Above inductive argument still works for ¢t < ¢y — 1; so we can conclude that )\BL < XFL <

~ AAH ARH 2
BL 2 1 T +(Ty)
>‘Tk+(Tk)2+fr(T 21 <7 for t € {T} + (Ty)>, . .. ,to}. Furthermore, )\f_D?Hl < ﬁ <. Also
k k
BH_ ¢(b|BH,1) BH ¢ObBHzi,—1) BH BH PN AH
Ato—1 GOALT) < Anty SOALar 1) — =\, < PN , 80 Apty < (Z((l;‘lig,ll)). Thus A7) <.
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ABH 4y
Knowing that A, < v, APE, < v, we have 2,1 < A;g—ivﬂ. Therefore
top—1

\BH _ \BH ¢(b|BH,xtO,1)
fo o=l (b AL, xto 1)

t A4y
. ¢(b|BH, )\B’I-(I)—_i__’_l)
> A T
¢(b| AL, )\BI—?—_,'_,YH)
+v +v
B ) ¢(b|BH, A;g—iﬂ) . ¢(b|BH, m)
B ! vy +7
1 1
¢(blAL, m) ¢(b|AL, )\BH—JwH)
H+
¢(b|BH, A;ﬁ—%ll)
> Tpg — BH (68)
¢(blAL, )\B}(}—_i__’_l)
Here the first inequality follows that (:ﬁf w)) monotonically decreasing. The last inequality
\BH
SOIBH )
follows assumption [25, By choosing v small enough 75, — v ;%’él — > 120 (1+7).
¢(b\AL,W)
il
Finally, We can verify that A" < sadzy < 7-
#(b|BH,1) —BH B
Therefore, for any small v > 0, there is a finite A < —%= and a finite sequence of actions
f)CQ such that
X

Zo
A (i [A) < B AP0 IA) < i (14 < AP (hE2|A) <
This sequence starts with h% +( for some large k£ and large Tj; and ends with a long

sequence of action b. m
It is direct to verify that

x
A (057 [A) < B AP IA) < 5 _Oxo(l +7) < A7 (b2 |A)

implies that z;(h;?|A) > zy. Therefore, we can again cite lemma 27| and . to conclude

L he
that, with another finite sequence of action b following thOQ, society’s belief is pushed into

the e—neighborhood.
Following are a few computation results which is used in previous proof. The first claim

computes the minimum posterior weight associated to payoff state B, given that current
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weight is « € (xo, 1].
Claim 32 Consider set A = {(pau, pBL, PBH)|* = PBH + PBL, T € (20, 1]}, let

_ pea®(b|BH, x) + ppro(b|BL, x)
pan®(b|AH, z) + pard(D|AL, z) + ppa¢(b|BH, z) + ppr¢(b|BL, x)’

(D)

where (papg, L, Per) € A. Then

x¢(b|BH, x)
(1 —2)¢(b|AL,x) + xp(b|BH, x)

x(b) >

Proof. Since ppy + ppr, = =, and pag + par = 1 — z, we can rewrite x(b) just in terms
of papg and ppy, where pag € [0,1 — 2| and ppy € [0,2]. Then we compute and find that
% > 0, for the reason that ¢(b|AH, x) — ¢(b|AL,x) < 0 on x € (xg, 1]. So

2¢(b|BL, x) + ppul¢(b|BH, ) — (b| BL, z)]
(1 = 2)¢(b|AL, ) + 2¢(b| BL, x) + ppu[¢(b|BH, x) — ¢(b|BL, z)]

2(b) > 2(b)|pay=0 =
Similarly we compute and find that ﬁx(b)mb{:o < 0, for that ¢(b|BH,x)—¢(b|BL,x) <0
on z € (g, 1]. So

x¢(b|BH, )
() par=0 = T(0)|pan=0ppr=z > 1¢(b|BH, x) + (1 — x)¢(b|AL, z)’

Claim 33 Let §(z) = ((ﬁ((a'gé”?):ﬁ(&l‘i??), then if

1. private signal is unbounded, then §'(x) >0 on z € (0,1).

2. private signal is bounded, then §'(x) > 0 on z € (s,35); and F'(x) =0 on x € (0,s] U
5,1).

Proof. First we compute §'(z) Since f¥(z) = =2 f4(z), we can write

fA($)(pH - pL)

S = GRIBH, ) - GBIAR, o

A(z),

where A(z) = Z2[FB(xo) — paFA(x0)] — =2(1 — pr) FA(x) + (1 — pr ) [FP(x) — FP(20)).
We first show that A(x) > 0 on x € [x¢, 1]. We can verify that A(z¢) > 0 and A(1) > 0.
Furthermore, we compute A'(z) = % [(1—pg)F*(z) + pu F*(x0) — FP(20)]. We can see that
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either (1) A'(x) < 0 on z € [zg,1] or (2) 3 an unique z* € (o, 1] such that A’(z*) = 0. In
the first case, obviously A(z) > 0 on x € [z, 1]. In the second case, We can see that A(x)
achieves minimum (1 — pg)[F?(z*) — FB(z0)] > 0 at z*.

Furthermore, we observe that lim, o+ A(z) — +o00, and A'(x) < 0 on = € (0,z0]. So
A(x) > 0 on (0, x¢] as well.

If private signal is unbounded, then f4(z) > 0 on z € (0,1). Thus §'(z) > 0 on (0,1). If
private signal is bounded, then f4(x) > 0 on x € (s,3); and f4(z) =0 on z € (0,s] U [5,1).

And the second conclusion follows directly. m

Claim 34 20AH2) 1 4 pulF2@o)FB(o)] _ . dlalAHa) » q 4 palPP(ao) F (o) q

#(b|BH,z) pa FB(x0)+(1-pm) ’¢(G|BH1‘) pu[1—FB(x0)]+(1—px)
Proof.
SOlAH, z) . _ pu[F*(x0) — FP(x0)] + (1 — pg)[F*(x) — FP ()]
o(b|BH, z) puFB(z0) + (1 — pu)F'P(z)
< pulF* (x0) = F”(x0)]
= puFP(xo) + (1 —pu)FB(2)
< pulF* (o) — FP ()]
= puFB(xo) + (1 —pm)

The other inequality can be similarly verified. m

Claim 35 If x € [zo, 1], then

¢(b|AH, x) _ max{¢(b|AH, x9) = $(b|BL, x9), $(b|AH,1) — 6(b|BL, 1)} _
o(b|BL,z) prFB(zo) + (1 —pr)

o(a|AH, x) 1_ max{¢(a|AH, zq) — ¢(a|BL, o), ¢(a|AH,1) — ¢(a|BL,1)} o1
¢(a|BL, x) pr[l = F5(xo)l + (1 = pr)

Proof. Let f(z) = ¢(b|AH,x) — ¢(b|BL,x). It is direct to verify that f(zp) < 0 and
f(1) < 0. Furthermore, f'(z) = f4(x)[(1—pg)— (1—pr)=~]. If private signal is unbounded,
then (1 — py) — (1 — pr)=2 strictly increases from (1 — py) — (1 — pL)% to 1 — py.
Depends on whether (1 — py) — (1 — pL)% is negative, f(x) either strictly increases or

reaches an unique minimum somewhere between xy and 1. If private signal is bounded, then

(1—pg)—(1—pr) =2 strictly increases from (1—py)—(1—py) 1;;)”0 to (1—py)—(1—pr) =2 If
(1—pu)—(1—pr)2 <0, then f(z) strictly decreases on [z, 1]. If (1—pH)—(1—pL)? > 0,
then f(z) either strictly increases or reaches an unique minimum somewhere between xy and
1.
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Therefore, f(z) < max{¢(b|AH,xo) — ¢(b|BL,xq), ¢(b|AH,1) — ¢(b|BL,1)}. The first
inequality follows directly. The verification of the second inequality is very similar, for the
reason that ¢(a|AH,x) — ¢(a|BL,x) = —f(x).

c/2 c/2

mpu(TEH+E/2)’ TpH+E/2
> xgy. For notatzon convenience, we denote 1 as xgy + 0"P.

Claim 36 If \?" > npy + 5 and ABZ < ¢ < min{
1

}, then x; >

I4cl+

1+cy+

"BH+€/2 7rBH+5/2
Proof. We have
ABL
T AP+ APE 1+ St
t = AH BL BH — 4 AH
1_+'At +_At +_At \BH +_ABH +‘ABH +1
t t t
1 1
> > : (69)
1 A uwp | 1
w7 T e 1 1+CE+7TBH+€/2
t t
. . . up €/2 : : 1 TBH
It is direct to verify that c; < praey ey i equivalent to that ; T F—— > o .
2 1+ down
Claim 37 If )\ )\BH < cd"“’" < WBH/ 75 Then x; < e downi - <
TFBH 1>
. . 1 down
rgy. For notation convenience, we denote 1+cdowt'jf T as xpy — 0w,
E WBH—E/Q
Proof. We have
/\BL )\BL
)\BH + 1 )\BH + 1
Ty = 1 <
NBH + /\iTH + /\FW +1 )\FW + /\tB*H +1
1+ Cdown
down
1 + C + TBH— 6/2
. . 1 own
It is direct to verify that cdv" < 2 g equivalent to that —; e |
TBH—E/2 1+c Dw"+;;;4§5 mpH+1

Claim 38 We have following results:

1. —i((é’“gév?) is strictly increasing on (s,S), and is constant on (0,s) U (5,1).
2. —i((:‘lgg’?) 18 strictly increasing on (:L'O,E), and is constant on (§, 1),
3. SWBLL) 4o strictly decreasing on (rpH,S) di tant on (5,1)
© BO[ALz) Y g BH,S), and is constant on (S,1).
¢(a|BL,z) - . . B
4. S@ALz) ' weakly increasing on x € (1 — e, 1) for any small enough €.
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Proof. To see the first result, we compute %Zf(( = fB(x)FB(x0)(py — pr), which is

strictly positive on (s,5) and 0 on (0,s) U (5,1).
To see the second result, we compute that dd zéﬂgéi)) = ¢(b]‘cgg{)m)}gg( ), where g(x) =
[(1 = pr)p(b|BH,z) — (1 — pr)(b|AL, 2)1=2]. We can prove that g(z) > 0 on = € (z,3)

as following: first, as © — o, we have g(z) — (1 — pr)FP(zo) — (1 — pu)F4(z9) =22 0,

which is strictly positive since F5(zo) = [ LAdFA(t) > =20 FA(:L'O) second, we Compute
g'(x) = (1 —pu)o(b|AL,x)5 > 0 on z € (0, 1).

To see the third result, we similarly compute %ﬁ%gﬁig = ([;zafq)gz)(ﬁ)h(x), where h(x) =

=2¢(b|AL, x) — ¢(b|BL,x). We can prove that h(z) < 0 on z € (zpy,1) as following:
first, we compute 1/(z) = —5¢(b|AL,z) < 0 on = € (zppy,1); second, we can prove that
as r — Tppy, g(x) — HJQZS(MAL,IBH) — ¢(b|BL,xpy) < 0. Here, we need to use the
fact that FP(x) = [ 1ttdFA( ) > L=£FA(x) for all # € (0,5). Then ZZELG(H|AL, x) —

¢(b|BL,xpy) = pL[l 88 [PA(10) — FP(20)] + (1 — pr) 55222 FA(wpn) — FP(xpn)], where

TBH TBH

1— zBHFA( o) — FB( 0) < %FA(IEO) _ FB(ZEO) < 0; and 1;;ﬁ%FA(:EBH — FB(xBH)) <0.

TBH

To see the fourth result, we compute %igi\ﬁfg = (1 — po)fHz)[-E20(a|lAL, z) +

¢(a|BL,x)]. If private signal is of bounded strength, then obvious this derivative is 0;

if private signal is of unbounded strength, then we can always find a small enough ¢ to
guarantee that —=2¢(a|AL,z) + ¢(a|BL,z) > 0. m

o1
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