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Abstract

We introduce the uncertainty of psychological motivation into reciprocity model and explore its impli-

cations for reciprocal behavior. We extend the reciprocity model in extensive form games (Dufwenberg

and Kirchsteiger, 2004), develop the Extended Sequential Reciprocity Equilibrium (ESRE), and prove its

existence. We use this general framework to study many well-known games, by comparing the theoretical

predictions in complete and incomplete information games. We find that, in prisoners’ dilemma, players are

more likely to cooperate with each other when they have information about the reciprocal motivations of

their opponents, given the benefit of defection is not too large.
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1. Introduction

Behavioral economists have noticed that uncertainty about people’s psychological motivations prevails

and it is tempting to relax the assumption of common knowledge about the intensity of these motivations.

As Attanasi, Battigalli and Manzoni (2016) have argued, it is implausible that the subjects who are ran-

domly drawn from a population to participate in an experiment would have sufficient information to know5

others’ other-regarding preferences. Furthermore, different experiments have suggested large heterogeneity

in social motives among individuals. For example, Dohmen, Falk, Huffman and Sunde (2008) report, based
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on a survey, that people show a high degree of heterogeneity in trust and reciprocity among individuals.

Hennig-Schmidt, Sadrieh and Rockenbach (2010) show that there is large heterogeneity among employee’s

effort level after the employer offered them a bonus. Bellemare, Sebald and Suetens (2018) have also doc-10

umented evidence that, in the dictator game, the dictators exhibit heterogeneous guilt sensitivities. These

laboratory experiments suggest that the assumption of commonly known psychological motivations may not

be innocuous in many situations.

There have been papers that discuss the implications of assuming incomplete information in psycholog-

ical games. Battigalli and Dufwenberg (2009) lay out a general foundation for psychological games where15

they stress the necessity of extending the analysis to incomplete information games. Attanasi, Battigalli and

Manzoni (2016) study guilt aversion in Bayesian games and explore how incomplete information influences

the analyses in centipede games. We attempt to make contributions in this direction, as well. In particular, we

focus on a reciprocity game in which players are uncertain about the intensity of each other’s psychological

motivations.20

We extend the reciprocity model in extensive form games (Dufwenberg and Kirchsteiger,2004; hence-

forth DK) to incorporate incomplete information about sensitivity parameters, which are the degrees to

which players care about social motives. Previous reciprocity models incorporate into standard game theory

people’s natural tendency to reward kind people and punish mean people. But they maintain the assumption

of complete information about reciprocal motivations (Rabin, 1993; Dufwenberg and Kirchsteiger, 2004;25

Falk and Fischbacher, 2006; Sebald, 2010). Therefore, our model complements to this strand of literature

by facilitating the analysis of reciprocal behavior subject to the uncertainty about others.

As Sebald (2010) points out, chance moves in a reciprocity model could alter the way players attribute

responsibilities. In this paper, the uncertainty of sensitivity parameters causes players’ psychological moti-

vations to be moderated. Because when one player lacks information about others, the consequence of his30

action depends on what other players would do based on their information. Then, whatever decision the

player makes, there may be an unavoidable risk that he might be kind to the unkind and be unkind to the

kind. As a result, his kindness would be evaluated in terms of how his action affects the expectation of other

players’ well-being.

However, the direction of the impact of uncertainty on equilibrium predictions is ambiguous. In many35
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games, reciprocal equilibrium outcomes are robust to a relatively small probability that players might be

selfish. As will be shown in Section 5.3, in an ultimatum game, the proposer would make a positive offer as

high as that to a reciprocal responder, despite the fact that the responder has a chance to be selfish and would

like to accept the lowest offer. The similar patterns are also found in monopoly pricing and public goods

games (Sections 5.2 and 5.5). On the contrary, in other games, the reciprocal equilibrium outcome can be40

sensitive to the introduction of uncertainty. For instance, in prisoners’ dilemma, cooperation can be rather

hard to maintain once both parties realize that their opponents could possibly be selfish (Sections 3 and 4).

The class of extensive form games of interest are multi-stage games with observed actions and inde-

pendent types. In standard game theory, Fudenberg and Tirole (1991) have studied this class of games and

define a strong version of Perfect Bayesian Equilibrium. We inherit their restrictions on the belief system,45

requiring the equilibrium assessment to be reasonable. It means that the type distributions of each player

are updated independently and any deviation of a player should not signal information that he does not pos-

sess. In addition, in the equilibrium notion of our reciprocity model, the Extended Sequential Reciprocity

Equilibrium (ESRE), we require the condition of sequential rationality that each player should maximize

his utility in each continuation game given the specified belief.50

Note that Sebald (2010) extends DK by chance moves. However, he only introduces procedural random-

ize options by using which players can avoid being held responsible for realized outcomes and thus mitigate

others’ reciprocal motivations. Unlike this paper, he maintains the assumption of complete information

about sensitivity parameters. Bierbrauer and Netzer (2016) also contain uncertainty in reciprocity models in

the context of mechanism design. In their setup, players have private information that is relevant for material55

well-being, yet the Revelation Principle does not hold in the presence of psychological motivations. They

examine the extent to which the implementable social choice functions are robust to the presence of the psy-

chological motivations. In the construction of certain mechanisms, they exploit the feature of a reciprocity

model that agents’ reciprocal incentives are effectively influenced by the feasible alternatives.

The outline of our paper is the following. In Section 2, we lay out the reciprocity model in extensive60

form games. In Section 3, we exemplify by studying prisoners’ dilemma and illustrate the implications

of uncertainty on reciprocal behavior. In Section 4, we compare the equilibrium outcomes between two

“societies” with or without information about members’ psychological motivations. In Section 5, we apply
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the theory to a series of examples and see how it may change the results from reciprocity models with

complete information. In Section 6, we conclude.65

2. The Model

We build a reciprocity model in extensive form games with uncertainty about players’ sensitivity pa-

rameters. The baseline model is DK, who extend the original reciprocity model from simultaneous games

Rabin (1993) to extensive form games under the assumption of complete information. The key difference

between our framework and DK’s is that now players need to update their beliefs about types before making70

decisions. Since players’ actions may vary across types, the change in beliefs about types would influence

players’ reciprocal motivations and the play of game.

Suppose there are I players. The type space for each player i is Θi, and the product of all type spaces is

Θ = ∏i Θi. Note that θi is a vector (θi1, . . . ,θi,i−1,θi,i+1, . . . ,θiI) that consists of I− 1 elements, where θi j

( j 6= i) represents i’s sensitivity parameter with respect to j.75

At the beginning of the game, nature moves and randomly selects a type θi for each player i from a type

space Θi according to a prior distribution µ0
i ∈ ∆(Θi). Each player is privately informed of his own type and

has common knowledge of the prior distribution µ0 = ∏
I
i=1 µ0

i , where the type distributions of each player

are independent.

The game proceeds for T stages. At stage t, each player makes a decision from a finite set Di,t simulta-80

neously. For simplicity, we assume that all types of one player share the same feasible choice set. At the end

of each stage, all the decisions made are observed by all players. Let Di =
⋃T

t=1 Di,t be the set of all feasible

actions for player i. A history ht contains the decisions of all players up until stage t, which belongs to the

set Ht . Let H =
⋃T

t=1 Ht be the set of all histories and let h0 be the initial node.

A behavior strategy ai for player i specifies the (mixed) action each type would take at each stage. That85

is, ai specifies a map from Θi×Ht−1 to ∆(Di,t) for each t. We denote by Ai the set of all behavior strategies

for i and by A the set of all strategy profiles. Since player i has information about his own type, we also need

the notation for the behavior strategy associated with a single type. The behavior strategy for a single type

θi is a mapping si : H −→ ∆(Di), so that si(h) = ai(θi,h). We denote by Si the set of all strategies of single

types and S the set of all profiles of such strategies.90
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Players’ (expected) material payoffs are written as functions πi : A×∆(Θ) −→ R. When players play

strategies a ∈ A and hold a belief γ ∈ ∆(Θ), player i’s expected material payoff is denoted by πi(a,γ). Later

we abuse notation a little by using π(si,a−i,µ−i) to denote i’s expected payoff when he plays a strategy si

after he knows his type and holds a belief µ−i about others’ types. Since types do not enter the material

payoff functions, we can also define players’ expected material payoffs in complete information games as95

functions π̄i : S−→ R.

At each stage of the game, the players will update beliefs about types based on observed history and

initial strategy profile. Following Fudenberg and Tirole (1991), in such a multi-stage game with observed

actions, we can assume that they have common knowledge about the beliefs formed at each information set,

which results in a belief system µ : H −→ ∆(Θ). In equilibrium, the beliefs in µ are derived from Bayes rule100

whenever possible and satisfies the property of consistency as defined in Kreps and Wilson (1982).

On the other hand, we also ask players to revise beliefs about strategies as game unravels. The discussion

of this necessity is contained in DK. Specifically, we ask different types to revise beliefs about strategies in

the same way. Suppose initially players hold a belief that ai will be played by i, then at history h ∈ H,

ai(h) ∈ Ai is the revised belief about ai. We follow DK by letting ai(h) be the same as ai except for the105

histories that define h. The interpretation is that in all predecessors of h, players are believed to make

choices that can lead to h with probability 1 conditional on that h has been reached. For a certain type θi, the

revised belief about a behavior strategy, si(h), is similarly defined, i.e., si(h) = ai(h)(θi).

Then, we introduce players’ first- and second-order beliefs about strategies. Player i’s belief about j’s

strategy is contained in Bi j(= A j), and player i’s belief about j’s belief about k’s strategy is contained in110

Ci jk(= B jk). When players update their beliefs about strategies at history h, they update their first- and

second- order beliefs in parallel; thus, Bi j(h) = A j(h) and Ci jk(h) = B jk(h).

Since the kindness of each player i is measured by the intended consequences of what he does relative to

what he could have done, the set of the alternative options he can choose from plays an important role in the

assessment of his kindness. In particular, we focus on reasonable strategies they expect others to play, which115

are defined as efficient strategies. We will first define an efficient strategy associated with a single type in the

same way as in complete information games (DK, 2004; 2019). The idea is that, for any type of a player, an

efficient strategy should not be outperformed by another strategy in all histories, regardless of any strategies
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played by other players.

The set of efficient strategies associated with a single type for player i is defined as below:

Ei = {si ∈ Si| 6 ∃s′i s.t. for all h and (s j) j 6=i, π̄i(s′i(h),(s j(h)) j 6=i)

≥ π̄i(si(h),(s j(h)) j 6=i), with at least one strict inequality}

Then, we restrict efficient strategies to comply with efficiency for each type. Thus, the set of efficient120

strategies is denoted by Ẽi = {ai ∈ Ai|ai(θi) ∈ Ei for each θi ∈Θi}.

In any continuation game, each player i updates his belief about other players’ types γ−i ∈∏ j 6=i ∆(Θ j)

and belief about other players’ strategies (bi j) j 6=i ∈ ∏ j 6=i Bi j. Under these beliefs, he knows the range of

possible expected payoffs to player j ( j 6= i) as he varies his strategy si. That is, {π j(si,(bi j) j 6=i,γ−i)|si ∈ Si}.

In player i’s view, a fair amount of payoff player j deserves is modeled as the average of the maximum and

minimum of the range.

π
ei
j ((bi j) j 6=i,γ−i) =

1
2

[
max

{
π j(si,(bi j) j 6=i),γ−i)|si ∈ Si

}
+min

{
π j(si,(bi j) j 6=i),γ−i)|si ∈ Ei

}]
Note that when calculating the minimum payoff we exclude non-efficient strategies from consideration.

A simple example that provides an explanation for this setup is included in Figure 3 of DK.

Then, player i would think his kindness to j at history h as being j’s expected payoff, which depends

on i’s behavior strategy, relative to the equitable payoff to j. The kindness of i to j at h is a function

κi j : Si×∏ j 6=i Bi j×∆(Θ)→ R defined by

κi j(si(h),(bi j(h)) j 6=i,µ−i(h))

=π j(si(h),(bi j(h)) j 6=i),µ−i(h))−π
ei
j ((bi j(h)) j 6=i,µ−i(h))

Conversely, in player i’s view, the equitable payoff to him from j’s play, conditional on his second-order
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belief (ci jk)k 6= j and belief about type distribution γ , is given by

π
e j
i ((ci jk)k 6= j,γ) =

1
2

[
max

{
πi(a j,(ci jk)k 6= j,γ)|a j ∈ A j

}
+min

{
πi(a j,(ci jk)k 6= j,γ)|a j ∈ Ẽ j

}]
Player i would perceive the kindness of j to himself as his expected payoff resulting from j’s play relative

to his equitable payoff. Formally, his perceived kindness is a function λi ji : Bi j ×∏k 6= j Ci jk×∆(Θ)→ R.

Specifically,

λi ji(bi j(h),(ci jk(h))k 6= j,µ(h))

=πi(bi j(h),(ci jk(h))k 6= j),µ(h))−π
e j
i ((ci jk(h))k 6= j,µ(h))

To capture player i’s motivation to be kind to the kind and unkind to the unkind, we write down player i’s

reciprocal payoff toward j as the product of the kindness and unkindness terms, multiplied by a sensitivity

parameter. The (expected) utility of player i of type θi at h is a function Uθi
i : Si×∏ j 6=i

(
Bi j×∏k 6= j Ci jk

)
×

∆(Θ)→ R, which can be separated into material and psychological payoffs. Specifically,

Uθi
i (si(h),(bi j(h),(ci jk(h))k 6= j) j 6=i,µ(h))

=πi(si(h),(bi j(h)) j 6=i),µ(h))

+∑
j 6=i

θi j ·κi j
(
si(h),(bi j(h)) j 6=i,µ−i(h))λi ji(bi j(h),(ci jk(h))k 6= j,µ(h)

)
In the equilibrium analysis, we treat each player as being rational “agents” at different histories. Each

agent (i,h), together with his utility, is identified with the corresponding player and the history at which the125

player makes a move. The equilibrium assessment requires that players update beliefs in the above way and

each agent maximizes his “local” utility.

Before we give the definition of the equilibrium, we introduce another notation Ai(θi,h,a) ⊆ Si, which

contains strategies that prescribe the same actions for all types θi as ai(θi)(h), at any history except h.

Finally, we define the equilibrium notion as below.130

Definition 1. (a∗,µ∗) is an Extended Sequential Reciprocity Equilibrium (ESRE) if:
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(1) At each history h, for each player i, the following conditions are satisfied:

(1.1) a∗i (θi,h) ∈ argmaxsi∈Ai(θi,h,a∗)U
θi
i (si,(bi j(h),(ci jk(h))k 6= j) j 6=i,µ

∗(h));

(1.2) bi j = a∗j , for all j 6= i;

(1.3) ci jk = a∗k , for all j 6= i, k 6= j.135

(2) (a∗,µ∗) is reasonable in the sense of Fudenberg and Tirole (1991).

According to Definition 1, condition (1.1) states that at each history h, player i maximizes his utility

given his updated beliefs about types and the equilibrium strategy profile of all players. Conditions (1.2) and

(1.3) state that all players update their beliefs correctly, therefore the first- and second-order beliefs coincide

with the equilibrium strategy profile. Condition (2) requires that the belief updating obeys Bayes’ rule at140

each information set that is reached with positive probability and that in “zero-probability” events players

would hold beliefs that satisfy the “no-signaling-what-you-don’t-know” condition proposed by Fudenberg

and Tirole (1991).

Since condition (2) is implied by consistency in the sense of Kreps and Wilson (1982), it suffices to prove

existence of an assessment that satisfies sequential rationality and consistency. The proof is a combination of145

that of sequential reciprocity equilibrium in DK and that of trembling-hand equilibrium in Selten (1975). We

first prove the existence of equilibrium in perturbed games where players are restricted to play completely

mixed strategies and the entire belief system is pinned down by Bayes rule. This proof resembles that in

DK. Then we exploit the upper semi-continuity of the sequence of equilibria in perturbed games. It can be

shown that there exists such a sequence of equilibria in perturbed games that converges to an assessment that150

satisfies sequential rationality and consistency.

Theorem 1. In any psychological game with reciprocity motivations, an ESRE exists.

3. Prisoners’ Dilemma with Private Sensitivities

C D
C c,c 0,x
D x,0 d,d

Table 1: Prisoners’ Dilemma
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As has been shown in Rabin (1993), reciprocity concerns can give rise to mutual cooperation in prison-

ers’ dilemma. When a player cares about not only the material payoff, but also the intention of others, she155

would think that the co-player is kind by cooperating and unkind by defecting. It is possible that the recip-

rocal motivation of each player to reward a kind person is so strong that it outweighs the payoff gain from

defecting, and then they together can manage to achieve the socially optimal goal through cooperation. The

reciprocal equilibrium is characterized by a threshold of the sensitivity parameter. Only when the sensitivity

parameters of both players are above this threshold should cooperation happen. Similarly, in the presence of160

uncertainty, an equilibrium strategy takes the form of a threshold strategy. Nevertheless, the threshold in the

incomplete information model is generically different from that in the environment of complete information.

In Prisoners’ Dilemma as well as Battle of the Sexes in Section 5.1, we assume continuous type spaces

for the simplicity of exposition, i.e., Θi = [θ i, θ̄i]⊂ R+.2 Denote by Fi the cumulative distribution function

of θi which has full support on Θi. Furthermore, in this section, we will focus on threshold strategies in the165

equilibrium characterization. Formally, by a threshold strategy we mean a strategy si that has the property

that there exists θ ∗i ∈ R, such that for θi ≥ θ ∗i , si(θi) = C, and for θi < θ ∗i ,si(θi) = D.3 In Proposition

1, we will prove that any equilibrium strategy is a threshold strategy. The reason is that cooperation is

strictly dominated by defection with respect to the material payoff, and hence, in order for a player to

favor cooperation the reciprocity payoff from cooperation must be relatively higher than that from defection.170

Plus the payoff is linear in the sensitive parameter, so there will be a lower bound for the types that prefer

cooperation.

In the rest of the paper, we simplify the multivariate functions κ
θi
i j , λ

θi
i ji, and Uθi

i , whose arguments include

actions, strategies, and beliefs, into functions that only depend on actions and the associated probabilities

of strategies. For instance, if under a strategy si, player i plays action C with probability 40%, then we175

say the associated probability of C under si is 40%. Specifically, we denote by pi (i = 1,2) the probability

that player i plays C. In equilibrium, the expression with respect to probabilities is equivalent to the original

definition based on two reasons. First, no matter for material payoffs or psychological payoffs, the associated

2In the general model, we assume finite type spaces to facilitate the existence proof of an equilibrium. In PD and BoS, however,
an equilibrium always exists. In addition, the deviation from finiteness does not change the main insights of the examples.

3For the ease of exposition, we shall assume that any type indifferent between C and D will break the tie in favor of C. This does
not affect the equilibrium results in any way, since such a cut-off type only has measure zero.
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probabilities suffice to pin down players’ (expected) payoffs. Second, actions and beliefs coincide at all

levels of the belief hierarchy in equilibrium, which allows us to use a single probability to represent both the180

associated probability of a strategy and the higher-order beliefs about it.

Proposition 1. Suppose a pair of strategies (s1,s2) is an ESRE. Then for i = 1,2, si takes the form of a

threshold strategy.

Under uncertainty, each player cannot ensure exactly what type the other is assigned and which action

the other is taking. Veiled information gives rise to the possibility that one can be kind to an unkind person185

or be unkind to a kind person. To cooperate brings about a risk of getting betrayed in addition to the material

loss, whereas to defect could possibly fail a kind person and make feel bad. Therefore, this paper differs

from previous literature by introducing the strategic concern about the innate risks of reciprocating in wrong

ways.

Table 1 is a parametric game form of prisoners’ dilemma (x > c > d > 0, 2c > x). We call the row190

player P1 and the column player P2. In this game, it is a trivial ESRE that both players take D at any type,

maximizing own material payoffs and reacting to unkindness of each other. To look at a more interesting

case, we focus on the “cooperative” ESRE that include cooperation with positive probability.

Suppose the players use threshold strategies s1 and s2 and pi (i = 1,2) is the probability that player i

takes C. P2’s expected payoff ranges from d(1− p2) to cp2 + x(1− p2) depending on the strategy of P1.195

As the average of the two extremes, the equitable payoff to P2 is πe
2(p2) =

1
2 [cp2 +d(1− p2)+ x(1− p2)].

According to Definition 3, the kindness of P1 to P2 by taking C and D is κ
θ1
12 (C, p2) =

1
2 [(x− d)+ (c+

d− x)p2] and κ
θ1
12 (D, p2) =−κ

θ1
12 (C, p2), respectively. On the other hand, P1 thinks the equitable payoff to

herself, symmetric to her opponent, should be π̃e
1(p1) =

1
2 [cp1 + d(1− p1)+ x(1− p1)]. Hence according

to Definition 5, in P1’s point of view the kindness of P2 is equal to P1’s expected material payoff under200

strategies s1 and s2 minus the equitable payoff π̃e
1(p1). It is easy to check that P1 perceives P2’s kindness as

λ
θ1
121(p1, p2) = (p2− 1

2 )[(x−d)+(c+d− x)p1].

With these components at hand, based on Eq.(4) the interim utilities of type θi from taking C and D can
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be written as:

Uθi
i (C, p) = cp j +

1
2

θi(p j−
1
2
)[(x−d)+(c+d− x)pi] · [(x−d)+(c+d− x)p j]

Uθi
i (D, p) = xp j +d(1− p j)−

1
2

θi(p j−
1
2
)[(x−d)+(c+d− x)pi] · [(x−d)+(c+d− x)p j]

(1)

As has been argued before, the equilibrium strategy for player i is featured by a threshold θ ∗i . At θ ∗i ,

player i must be indifferent between C and D, so that Uθ∗i
i (C, p) =Uθ∗i

i (D, p). Solving this equation we have

the expression of the threshold θ ∗i (p) in equilibrium.205

θ
∗
i (p) =

d− (c+d− x)p j

(p j− 1
2 )[(x−d)+(c+d− x)pi] · [(x−d)+(c+d− x)p j]

, (2)

where pi 6= 1
2 and (x−d)+ (c+d− x)pi 6= 0 for i = 1,2.4 Now that Eq.(2) characterizes the threshold

strategy for player i, the remaining condition for an equilibrium is that beliefs and strategies should be

consistent. That is, for each player i, the proportion of the types above the threshold θ ∗i (p) according to the

original distribution Fi(·) should coincide with his actual cooperation rate pi under the strategy si. Based on

Definition 1, the characterization of the ESRE in prisoners’ dilemma is as follows.210

Proposition 2. (s1,s2) is a cooperative ESRE if and only if there is an ordered pair p = (p1, p2) ∈ (0,1]2

such that for each pi,

1.

si(θi) =

 C if θi ≥ θ ∗i (p),

D if θi < θ ∗i (p).

2.

1−Fi(θ
∗
i (p)) = pi. (3)

It is worth noting that in any equilibrium that involves cooperation to some extent the associated proba-

bility p j must be strictly higher than one half. Otherwise, player i would view that j cooperates at such a low

4When either pi =
1
2 or (x− d)+ (c+ d− x)pi = 0, the psychological term vanishes in the utility function, so that U

θ j
j (C, p) =

cpi < xpi + d(1− pi) = U
θ j
j (D, p). Player j should play D with probability 1. In turn, player i should play D with probability 1, as

well. It contradicts with pi =
1
2 or (x−d)+(c+d− x)pi = 0. That means in equilibrium, we do not need to consider these two cases.
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level that j must be unkind, i.e., λi ji(pi, p j)≤ 0. In this case, player i would have no incentive to cooperate.215

Thus, player j would not like to cooperate either.

4. Stranger vs. Acquaintance Societies

In this section and Section 5, we study the equilibrium outcomes in stranger and acquaintance societies.

Let us explain the meanings of these two types of societies. For any given game form, players have a

common prior about each player’s type distribution. Then, their types are randomly drawn according to the220

distributions and privately informed to each player. In the acquaintance society, players start the game with

the knowledge of each other’s types. In the stranger society, players start the game without the knowledge,

yet they may update their beliefs as game proceeds.

4.1. The Condition under which Information Reinforces Cooperation

This section examines the effect of information on cooperation in PD by comparing the mutual coopera-225

tion rates, the probabilities of achieving the socially optimal outcome (C,C), in the stranger and acquaintance

societies. In our setup, these two societies differ only in the accessibility of information about sensitivity

parameters. Aside from that, players have the same payoff structures and population distributions. It is

ambiguous how information asymmetry would influence the mutual cooperation rate. Facing a stranger, a

person might be more reluctant to take C considering that her opponent could possibly be mean; but she230

could also be more willing to take C with the concern that otherwise she might let a kind person down. As

we will show below, there is no general answer for this question, but under a certain condition, knowing

each other is always conducive to cooperation among players, regardless of their type distributions.

Intuitively, player i’s willingness to cooperate should positively correlate with her reciprocity motivation

and negatively correlate with the attractiveness of defection. We exhibit this relationship by using the thresh-235

old as an indicator; the lower the threshold, the stronger the willingness to cooperate. Then we rewrite Eq.

(2) to disentangle the material and reciprocal effects. As in Eq. (4), given that θ ∗i (p) is positive, all three

terms in the fraction are also positive. The numerator is the material gain from defection, which is apparently

negatively related to the willingness. Meanwhile, the denominator represents the reciprocal payoff to player
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i when she takes C and it is positively related to i’s willingness to cooperate.240

θ
∗
i (p) =

1
2
·

πi(D, p j)−πi(C, p j)

κ
θi
i j (C, p j) ·λ θi

i ji(pi, p j)
(4)

From Eq. (4), the willingness of each player to cooperate depends on her belief about how often the

opponent cooperates. In any equilibrium of the acquaintance society, at the moment when they make de-

cisions, they know each other’s types and actions. So they will coordinate if both types reach the cutoff

level θ ∗i (1,1) (by symmetry, θ ∗1 (1,1) = θ ∗2 (1,1)). Otherwise, both of them will defect. Then, the mu-

tual cooperation rate in an acquaintance society is the probability that both types are above θ ∗i (1,1), i.e.,245

[1−F1(θ
∗
1 (1,1))] · [1−F2(θ

∗
2 (1,1))].

In the stranger society, however, players’ beliefs could be anywhere between 0 and 1 and the cutoff

level for cooperation is generally different from that in the parallel acquaintance society. To solve for the

equilibrium, we make an observation that when (c+d−x)≥ 0, θ ∗i is decreasing in p. The number (c+d−x)

also equals c− (x−d), which captures the difference in the benefits player i gives j by taking C, conditional250

on j’s choice. When (c+ d− x) ≥ 0, i’s taking C is relatively more kind to j when j is taking C. In this

case, if there is a portion of types of j which certainly defect, p j will be less than one. Not only cooperation

becomes riskier a choice for i, but from i’s point of view j is also less kind to her, which tempers i’s

enthusiasm to cooperate. Then j will anticipate i’s reaction and reduce his cooperation accordingly, which

triggers a downward spiral that reaches a lower probability of (C,C). This argument suggests that when c is255

not too high, in the stranger society the players always achieve lower probability of cooperation.

Proposition 3. If c+d− x≥ 0, the mutual cooperation rate in the acquaintance society is no smaller than

that in the stranger society.

4.2. Doubt and Cooperation Breakdown

In the stranger society, lack of information causes doubt among the two players, which could accumulate260

through iterative deduction and finally reduce or completely break down cooperation. The specific outcome

depends on payoff structure and type distributions. To illustrate an extreme case of cooperation breakdown,

we propose an example where two persons could very likely cooperate with each other in an acquaintance

society, but with no chance in a stranger society.
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O p

θ

1

F−1(1− p)

θ = θ∗(p)

.9

.5

Figure 1: The Collapse of Cooperation

In this example, the parameters take on values as c = 2, d = 1, x = 3 and it is a special case where265

c+ d− x = 0. Then the kindness of each player i by taking C is fixed as 1, while her perceived kindness

of j is solely determined by the strategy of j. The threshold becomes a single-variate function, θ ∗i (p j) =

1/2(2p j− 1). Suppose the type of each player is uniformly distributed over [.45, .95]. In the acquaintance

society, both players could form a cooperative equilibrium (C,C) if their types are above the threshold

θ ∗(1) = 1
2 , which accounts for 81% of the time according to the distributions. Strikingly, in the stranger270

society, cooperation cannot happen at any level. Below we will explain the reason for this sharp contrast.

Initially, player i knows that 10% of the time j will be assigned a type below .5 and will definitely defect.

From i’s point of view, she is facing this risk for taking C. So not only those types of i below the threshold

.5, but also those marginally higher than the cutoff level would like to defect. Specifically, the threshold for i

increases to .625 and now with probability 35% she would defect. Taking into account i’s thought, j knows275

he is facing an even bigger risk of being failed 35% of the time. Now no type of j from the random draw

would like to cooperate, and the same for player i. This process indicates that the suspicion among the two

players could loom large until all types retreat from cooperation. The solid curve in Figure 1 illustrates this
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iterated elimination of cooperative types.

The iterative process is analogous to those in the lemon market (Akerlof, 1970) and in the global game280

(Carlsson and Van Damme, 1993). To some extent, the sensitive types are prevented from cooperating by

growing suspicion in the similar way that quality cars are driven out by lemons and that risk dominance is

established as the criterion under unobserved payoff structure. However, these phenomena are driven by

different forces. In our model, higher order beliefs come into play through reciprocity payoffs that relate to

players’ intention; while in the lemon market, the explanation of market breakdown is that the buyer cannot285

distinguish good cars from bad cars; and in the global game, the beliefs of two players are correlated because

of noisy observations of a perturbed game.

4.3. When Information Can Hinder Cooperation

In Section 4.1, we conclude that, when c+d−x≥ 0, information encourages cooperation. If c+d−x <

0, not having information can be better. We can verify that if c+ d− x < 0, θ ∗i (pi, p j) is increasing in290

pi. This makes it possible that for some pi and p j, θ ∗i (pi, p j) < θ ∗i (1,1). So, it is possible that a stranger

society achieves higher mutual cooperation rate than the acquaintance counterpart, which will be shown in

the following example.

C D
C 5, 5 0, 9.9
D 9.9, 0 0.1, 0.1

Table 2: Prisoners’ Dilemma When c+d− x < 0

Suppose that the type distribution is uniform on [0.1,1.6], and the players play the PD game form below.

In this example, θ ∗i (1,1) = .4. So, in the acquaintance society, players are willing to cooperate if and only295

if both of their types are greater than or equal to .4. In the stranger society, the equilibrium prediction is

a player is willing to cooperate if and only if her type is greater than or equal to 0.372. We can compute

that stranger society achieves mutual cooperation with probability (.82)2 ≈ .67, and acquaintance society

achieves mutual cooperation with probability (.8)2 = .64 (Figure 2). From this example, we know that when

the gain from defection, x, is sufficiently small, information will reinforce cooperation; but when x is large,300

this may not be the case.
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Figure 2: Equilibrium Outcome p1 and p2 in Acquaintance Society (Red) and Stranger Society (Black)

To understand why this happens, we should first know that even without information about types, player

i knows that with at most 80% probability player j could choose C. Overall, j is still kind to i and i would

like to take an action that favors j. It is true that since there is a fraction of types of j would deviate, from

i’s perspective, j’s kindness is discounted. This causes i’s reciprocal motivation to weaken. However, the305

kindness of i to j by taking C given that j could possibly take D is higher than before, which means i feels

better about himself when he chooses to be a generous and forgiving person. These two competing forces

determine how information influences players’ reciprocity motivations. When the temptation of deviation is

large, the increase in the kindness of each player outweighs the decrease in the perceived kindness of their

opponents, which contributes to the increase in cooperation under incomplete information.310

5. Applications

In this section, we apply the theoretical model to a series of games and illustrate the implications of un-

certainty for reciprocal behavior. We compare equilibrium outcomes in stranger and acquaintance societies

and find inspiring results under parametric conditions.
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Yield Assert
Yield (Y ) 0, 0 1,3
Assert (A) 3,1 0,0

Figure 3: Battle of the Sexes

5.1. Battle of the Sexes315

In this section, we study the Battle of the Sexes (BoS) in Figure 3 and discuss the implication of recipro-

cal uncertainty.5 Call the player roles Man (M) and Woman (W). Suppose that players’ reciprocal types, θ M

and θW are random variables with cumulative distribution functions, FM and FW respectively, each with the

interval support, supp(F i) = [θ i, θ̄ i], for i ∈ {Man,Woman}. We shall again suppose that a large population

of agents are randomly paired to play the BoS, and we perform comparative statics of the two environments:320

the acquaintance and stranger societies. We focus on comparing the equilibrium behavior and we defer the

calculation to Appendix B. In the following observation, we compare the equilibrium condition where all

the types of each player plays the same action.

Observation 1. In both societies, the following statements hold:

(i) There always exists an equilibrium where Man Yields with probability 1 and Woman Asserts with proba-325

bility 1, and another equilibrium where it is vice versa.

(ii) There exists an equilibrium where Man and Woman Yield with probability 1, if and only if for i ∈

{Man,Woman} θ
i ≥ 6.

(iii) There exists an equilibrium where Man and Woman Assert with probability 1, if and only if for i ∈

{Man,Woman} θ
i ≥ 2

9 .330

Observation 1-(i) is intuitive; regardless of their types, players are materially maximizing, and also they

are being kind to the kind co-player. Also, in order for both players to Yield with probability 1, which is

materially worse off, they must be sufficiently reciprocal to have incentives to punish each other for being

unkind. And (Yield,Yield) requires a stronger reciprocity sensitivity than (Assert, Assert), as the players

forgo more material payoff to punish the co-player by a smaller amount. The implication of this observation335

5Note that while BoS is typically presented as an asymmetric game form as the players disagree on their preferred activity, the
strategies can be relabeled so it is symmetric as in Figure 3. Yield refers to going to the activity that the co-player prefers (e.g., Man
going to Ballet or Woman going to Football) and Assert refers to the action of going to the activity one prefers him/herself.
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is that if we compare the equilibria where all the types play the same actions, the availability of information

makes no difference. In particular, it implies that if we compare the maximum probability of the “efficient

outcomes,” (i.e., (Y,A) or (A,Y)) information plays no role.

For a more interesting case, we compare the maximum potential for the inefficient outcomes, (Y,Y), and

(A,A) in the two informational settings. Can we make a statement about which society may be better at340

staving off inefficient outcomes? First, the following observation describes the maximum probability of (Y,

Y) and for (A, A) in equilibrium in the acquaintance society.

Observation 2. In the acquaintance society,

(i) The maximum probability with which (Y, Y) is played in equilibrium is [1−FM(6)][1−FW (6)].

(ii) The maximum probability with which (A, A) is played in equilibrium is [1−FM( 2
9 )][1−FW ( 2

9 )].345

Proposition 4 compares the maximum probability of (Y,Y) in the two societies.

Proposition 4. Suppose that in the stranger society there exists an equilibrium with (Y,Y) occurring with a

probability higher than .625. Then, there exists an equilibrium in the acquaintance society with a weakly

higher (Y,Y)-probability. The result is strict if θ i < 6.

In other words, if a society is achieving a high rate of (Y,Y) in equilibrium without information about350

each other, it may be worse to provide information about each other. The rough intuition is as follows. Let

pi be the probability of i’s Yield. Note that first of all, the types of Man who are willing to play Y, knowing

that the co-player plays Y (i.e. pW = 1) must be strongly reciprocal, as they are giving up 3 to punish 1.

And now, suppose that the player is now slightly unsure: the co-player plays Y with pW < 1. Then, this has

two effects on utility. First, Y becomes slightly more profitable than when pW = 1. Second, since Woman355

is less unkind, and one’s incentives for punishment decreases. As a result A becomes psychologically more

attractive. The types who play Y in the acquaintance society are reciprocal enough to care about the second,

psychological effect more than the first, material effect. The upshot is that there are some types who play Y

in the acquaintance society and play A in the stranger society.

One may suspect that an analogous result may hold for (A,A). It turns out that is not the case. Consider360

the equilibrium with a highest rate of (A,A). Man does not need to have a high type to play A against A,

since the material gain from deviation to Y is 1, but he can punish by 3. So, it is psychologically easy
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to justify A against A (i.e. pW = 0). Now, suppose that Man is slightly unsure Woman is playing A (i.e.

pW > 0). Two effects are also at play. First, A becomes materially more profitable. Second, Y becomes

psychologically more attractive, as the willingness to punish decreases. And, some of the types who are365

playing A are low enough to care about the effect of “increasing material benefit” of A, than the effect of

“diminishing willingness to punish.” So, the types who played A in the acquaintance society will stick with

A in the stranger society. And, there are types who are selfish enough to prefer Y against A, but when

pW > 0, switch to A.

5.2. Monopoly Pricing370

One context in which reciprocity has been first discussed is monopoly pricing. Rabin (1993) has shown

that when consumers are motivated by reciprocity,6 the consumer will refuse to buy from the monopolist if

the price is higher than what they deem fair. And the profit-maximizing monopolist must, therefore, set the

price lower than the monopoly pricing level. We will apply our framework to explore how the monopoly

pricing would change when the firm is unsure of the consumer’s reciprocal motivation.375

Consider a profit-maximizing monopolist (M) who produces a good which costs c per unit, and a con-

sumer (C) whose valuation for the good is v > c. Without loss of generality, let v− c = 1. M can choose

the price p ∈ [c,v]. C may buy or refuse to buy. If C buys, M gets p− c, and C gets v− p. Otherwise, they

both get 0. There are two types of C: θC ∈ {0,θ}, where θ > 0. Prob(θC = 0) = η ∈ (0,1). We shall call

the type θC = 0 the selfish type and call θC = θ the reciprocal type. Everything except C’s type is common380

knowledge. Suppose that the selfish type will buy at p = v to break the tie. In addition, we will focus on the

cutoff strategies for the type θ . In other words, θ will choose a reservation price r ∈ [c,v] such that if p≤ r,

he will buy and otherwise he will not. Thus, an equilibrium is a pair (p,r).7

It turns out that there is a continuum of equilibria where the equilibrium reservation price ranges from

p := v− (2η+1+2/θ)+
√

(2η+1+2/θ)2−8η

4η
to p̄ := v− (3+2/θ)−

√
(3+2/θ)2−8

4 . It can be checked that c< p< p̄< v.385

Observation 3. In any equilibrium, the reservation price r for the reciprocal type of C lies in [p, p̄].

6Rabin (1993) calls it fairness.
7We suppress the beliefs since they must coincide with the equilibrium strategies in equilibrium.
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Given any reservation price r, M can either decide to price it at r and have both types buy it, or price at

v to take advantage of the selfish type and let the reciprocal type refuse. If the probability of the selfish type

η is sufficiently large, M will charge p = v in equilibrium, and the reciprocal type will refuse to buy. If η is

sufficiently small, M will charge the reservation price, r and both types will buy at that price.390

Therefore, if the probability of the selfish type is large, Rabin’s (1993) insight that M will offer a lower

price than v does not hold. When η > 1
2 , it may be beneficial for M to set p = v to exploit the selfish type

to the full extent. It is then reasonable to ask under what condition will M set price below v. A sufficient

condition for p < v to occur is that C is more likely to be reciprocal than selfish.

Observation 4. If the probability of the selfish type, η ≤ 1
2 , there is an equilibrium where both types choose395

buy at a price p < v.

Under this sufficient condition (η ≤ 1
2 ), we shall compare the highest-reservation-price equilibria and

the lowest-reservation-price equilibria between the stranger and acquaintance societies. In the acquaintance

society, the highest reservation price is r = p̄ and M will set the price p = p̄. And the lowest reservation

price is r = p and M will set the price p = p. In the stranger society, the highest reservation price is the same400

as that in the acquaintance Society.

Proposition 5. If η ≤ 1
2 ,

• When the highest-reservation-price equilibria are compared, M’s equilibrium price in Stranger Soci-

ety is identical to the price for the reciprocal consumer in Acquaintance Society.

• When the lowest-reservation-price equilibria are compared, M’s equilibrium price in Stranger Society405

is strictly higher than the price for the reciprocal consumer in Acquaintance Society.

One takeaway from (i) is that if more than a half of the population is reciprocal, the selfish individual

will benefit in Stranger Society, as they will face a price lower than that in Acquaintance Society. And the

reciprocal individuals are not worse off as they face the same price as in Acquaintance Society. In short,

consumers are weakly better off in Stranger Society if η ≤ 1
2 , when the highest-reservation-price equilibria410

are compared. This may not necessarily hold if η > 1
2 . Recall that when η is large, M will charge p = v so
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that only the selfish type will buy, and in this case, the reciprocal type will face a lower price in Acquaintance

Society.

The intuition for (ii) the result is as follows. If we compute the reservation price that will be accepted by

the consumer, then for any price higher than that, the consumer must not buy. Then, we need to compute the415

lowest possible price that will be refused by the consumer, and this depends on how unkind C deems M to

be (because C would refuse only when M is deemed unkind). If C deems M to be more unkind, C is more

willing to refuse, so M needs to offer a lower price to be accepted. And recall that if M believes C is about

to refuse at p, then by offering p M is more unkind in Acquaintance Society than in Stranger Society, and so

C is more lenient on M in Stranger Society. Thus, M can get away with charging a higher price in Stranger420

Society. As a result, the reciprocal type will face a higher price in Stranger Society than what is predicted

by the complete information model.

5.3. Ultimatum Game

In a typical ultimatum game, there are a proposer (P) and a responder (R). We will use male noun (he)

for P and female noun (she) for R. P offers a split of a unit pie into (1− x,x), x≥ 0, and R decides to accept425

or reject. If R accepts the offer, she will receive a payment x, and P will receive 1− x. Otherwise, they get

zero payoffs.

P’s pure strategy is a number x ∈ [0,1]. R’s pure strategy is a mapping s : [0,1]→ {A,R}. Suppose that

R plays a threshold strategy with a cutoff level s̄. Under this strategy, she will accept if x≥ s̄ and vice versa.

For simplicity and without loss of the insight, we focus on the case where P is purely selfish and R accepts430

the offer on the equilibrium path. Given that there is a continuum of equilibria, we only study P’s favorite

equilibrium and make comparative statics analysis.8

Suppose R’s sensitivity parameter is θR and it is public information, and P’s favorite equilibrium is

featured by an offer s̄(θR) to R. The following result shows the desirable properties of this function.

8The reason that there could be multiple cutoff levels for equilibrium lies in that the kindness of P depends on his expectation of
R’s response. If he gives a positive offer which he expects R to accept, it would be nice of him; but for the same offer, if he expects it
to be rejected, then this move should be regarded as unkind. Therefore, it is possible that a positive offer is chosen by P and accepted
by R in one equilibrium but rejected in another equilibrium.
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Proposition 6. In P’s favorite equilibrium, he would offer R an amount equal to435

s̄(θR) =
1
4

[
(3+

2
θR

)−
√

(3+
2

θR
)2−8

]
(5)

s̄(θR) is monotonically increasing in θR. Specifically, when θR −→ 0, s̄(θR) −→ 0; when θR −→ ∞,

s̄(θR)−→ 1
2 .

Suppose there are two types, a selfish type with θR = 0 and a reciprocal type with θR > 0. Let the

prior probability of the selfish type be (1−µ) ∈ (0,1). In equilibrium, the selfish type plays a strategy that

prescribes acceptance in response to any offer. So we only need to discuss the choice of the unselfish type.440

Let s̄(θR) be the cutoff level for the unselfish type as in the complete information game with θR > 0.

We explore two possibilities:

1. x = 0. The selfish type would accept and the unselfish type would reject. P’s expected payoff is

(1−µ).

2. x= s̄(θR). If it was ever an equilibrium offer, R must accept it; otherwise, P can deviate to x= 0. Then,445

given that P expects that both selfish and unselfish types will accept it, R’s belief about P’s kindness to

her is the same as in the complete information case when a deal is reached. In addition, the kindness

of R to P is also the same. That means the cutoff level for R is the same as s̄(θR). Whenever P wants

to induce acceptance by R, he offers exactly s̄(θR). In such an equilibrium, his payoff is s̄(θR).

Is it possible that P offers something in between 0 and s̄(θR)? No, this is a kind of offer that the unselfish450

type would reject and selfish type would accept. It is obviously more profitable for P to deviate to x = 0.

Proposition 7. P’s equilibrium choice is either x = 0 or s̄(θR), which depends on the comparison between

(1−µ) and 1− s̄(θR). Because s̄(θR)<
1
2 , when µ ≥ 1

2 , P will offer s̄(θR).

The economic intuition is clear. When the majority of population is reciprocal, the proposer should

increase the offer to the level as in the complete information game with respect to the reciprocal type.455
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5.4. Sequential Prisoners’ Dilemma

P1

P2

(
2
2

)
c

(
0
3

)
d

C

P2

(
3
0

)
c

(
1
1

)
d

D

In a sequential PD game, the second player (he) can condition his decision on the first player (she)’s

choice. Suppose player i’s sensitivity parameter is a random variable that would take on values either 0 or

θi (> 0). The prior probability of θi is pi. Then we examine under what conditions should the cooperative460

equilibrium, where the unselfish types of both players 100% choose C, be supported.

In the second round, conditional on the decision node following D, P2 revises her belief about P1’s

strategy such that she would treat P1 as if he was playing a strategy that assigns probability 1 to D. Based

on this belief, she would view P1 as unkind, and choose d irrespective of her type.

On the contrary, if the decision node following C is reached, the unselfish type of P2 may want to choose465

c when she is strongly motivated by reciprocity.

To support the choice of c, it needs to be satisfied that: θ2 ≥ 1
2−p2

. Note that in complete information

games, the threshold for P2 to cooperate conditional on P1’s cooperation is θ2 ≥ 1 > 1
2−p2

. It means that P2

has a stronger incentive to cooperate when she knows P1 does not know her type when he chooses C. That is

because P2 understands that, when P1 chooses C, he faces a risk that P2 might be selfish and would choose470

d in response. So she is more grateful for P1’s generosity when he truly chooses C.

Observation 5. Given that P1 has chosen C, it is optimal for P2 to choose c if θ2 ≥ 1
2−p2

.

Then, we discuss the conditions under which the reciprocal types of both players can choose cooperation

in equilibrium.
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Observation 6. Case 1: When P2 is more likely to be reciprocal (p2 ≥ 1
2 ), mutual cooperation is sustained475

as an equilibrium outcome if θ2 ≥ 1
2−p2

.

Case 2: When both players are more likely to be selfish (p1, p2 <
1
2 ), then cooperation will not happen.

Case 3: When P2 is more likely to be selfish (p2 <
1
2 ) and P1 is more likely to be reciprocal (p1 ≥ 1

2 ),

then mutual cooperation is possible when the unselfish types of both players have strong enough reciprocal

motivations. Specifically, it needs to be satisfied that

θ1 ≥
1−2p2

(2p1−1)(2− p2)

θ2 ≥
1

2− p2
.

The above results show that the prior probabilities of reciprocal types are essential for the cooperation

between the two players. First, cooperation is impossible if both players are more likely to be selfish.

Second, notice that the thresholds of θ1 and θ2 are decreasing in p1 and p2, respectively. It means that480

the more possible they are believed to be reciprocal, the easier for their sensitivity parameters to reach the

requirement for cooperation.

Observation 7. If p2 >
1
2 , the probability of reaching mutual cooperation is weakly higher in the stranger

society than in the acquaintance society.

This result derives directly from Observation 6. When P2 is more likely to be reciprocal, her incentive485

to cooperate conditional on P1’s cooperating is strengthened in the stranger society. That means, if the

reciprocal type of P2 does not want to cooperate in the stranger society, she would not like to cooperate in

the acquaintance society either. Furthermore, since p2 >
1
2 , once P2’s reciprocal type wants to cooperate, it

is optimal for P1 to cooperate regardless of his type. Because his material expected payoff from playing C

is higher; plus, P2 is overall kind, and he wants to return the favor by taking C.490

5.5. Public Goods Game

We revisit the public goods game studied by Dufwenberg, Gachter and Hennig-Schmidt (2011) and

introduce uncertainty to see what difference it makes. In this game, there are 3 players, each of whom

begins with 20 tokens as the endowment. Each player i can contribute si (si ∈ [0,20]) tokens to producing
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public goods G with the production function G = 3
2 (s1+s2+s3). All the public goods will be equally shared495

by the players. Therefore, each player will receive 1
3 G = 1

2 (s1 + s2 + s3). The payoff to player i equals the

remaining tokens, 20− si, and public goods he receives, 1
3 G.

Let b1
i j and b1

ik denote player i’s first-order beliefs about players j and k’s contributions. Then player i

would prefer to contribute all his tokens when the total contributions from other players are so high such that

θi ≥
2

b1
i j +b1

ik−20
(6)

Suppose that all players break ties by contributing to the public good. Then there exist a symmetric

equilibrium where all players contribute only when the sensitivity parameter of each player satisfies that

θi ≥ 1
10 .500

Let us introduce uncertainty by assuming that the type of each player θi could take on two values θ i and

θ̄i (θ i < θ̄i) and the prior probability of θ̄i equals p. If a player is selfish, then he would give out nothing,

which is an additional risk for any player who considers contribution.

Observation 8. The incentive constraint for the type θi of player i to contribute his tokens is that

θi ≥
2

E(b1
i j)+E(b1

ik)−20
(7)

Notice that Ineq. (6) is similar to Ineq. (7) except that it requires the expectation of others’ contributions

to reach a certain level.505

Because a low value of p would lower the expectation of players’ about each other’s contributions, it can

further hinder the chance of reaching the socially optimal outcome, i.e., everybody contributes all of their

tokens to the public goods. Under this parametric setting, there could be no contribution, full contribution,

and partial contribution in equilibrium.

Observation 9. The symmetric equilibria may take three forms:510

• 1. If p < 1
2 , then in any equilibrium no player contributes to the public good.

• 2. If p≥ 1
2 , θ i ≥ 1

10 , and θ̄i ≥ 1
10 , then there is an equilibrium where all players contribute si = 20.
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• 3. If p ≥ 1
2 and θ i <

1
10 , then there is an equilibrium where the type θ̄i of all players would like to

contribute 20 tokens when

θ̄i ≥
1

10(2p−1)
(8)

Note that in the third case, the lower bound 1
10(2p−1) is always higher than that in the complete informa-

tion, i.e. 1
10 . That means in the presence of possible selfish types, players are less willing to cooperate even

if they are themselves strongly motivated by reciprocity.515

If we focus on the equilibria with the highest contribution levels, then we have following results.

Observation 10. If θ i, θ̄i <
1

10(2p−1) , or θ i, θ̄i ≥ 1
10 , then the acquaintance society has a weakly higher con-

tribution level in expectation; if θ i <
1
10 < 1

10(2p−1) ≤ θ̄i, then the stranger society has a higher contribution

level in expectation.

To understand the first part of this result, note that when θ i, θ̄i ≤ 1
10(2p−1) , the players will not offer any520

contribution in the stranger society, whereas it is possible that the high types of all players can coordinate

in positive contributions in the acquaintance society. When θ i, θ̄i ≥ 1
10 , both types of players would like to

offer positive contributions in the acquaintance society, so the expected contribution level is 20.

In the third case, when θ i <
1
10 < 1

10(2p−1) ≤ θ̄i, the stranger society outperforms the acquaintance

society. Because in the stranger society, the high type of each player would like to contribute, which results525

in the expected contribution level as 60p. In the acquaintance society, however, the high type of each player

wants to contribute only when all other two players are of high types. So the expected contribution level is

60p3.

5.6. Investment Game with Punishment

The purpose of this game is to illustrate how the type updating feature of our model influences equi-530

librium behavior, and in-so-doing, provides a rationale for our modeling choice of how the updating is

performed. This game can be thought of as a form of the “investment game” with punishment. Player 1

(she) is an investor and Player 2 (he) is an entrepreneur. The investor can invest or not. Given the invest-

ment, the entrepreneur can put efforts and share the profits so they both earn $2, or slack off and keep $3

26



P1

P2

P1

(
−1
1

)
Punish

(
0
3

)
Let Go

Grab

(
2
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)
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Invest

P2(
3
0

)
Keep

Figure 4: Investment Game with Punishment

for himself. If the entrepreneur slacks off, the investor can pay $1 to punish by $2. This results in the game535

form given in Figure 4.

Suppose that P2 is selfish (θ2 = 0), and P1 could be either selfish (θ1 = 0) with probability .6 or reciprocal

(θ1 = θ̃1 > 1) with probability .4. The assumption, θ̃1 > 1 is to ensure that the reciprocal type will punish

when given the option. It can be checked that if θ̃1 > 1, then the reciprocal type of P1 would certainly punish

P2, if P2 grabs.540

First off, note that the selfish type of P1 will always keep at the root, since invest will necessarily give him

a lower payoff. So, if P2 is called to move with any positive probability, it is reasonable for P2 to presume

that he is facing the reciprocal type. What shall P2 do in this case? Since he is selfish, he doesn’t care about

the kindness of P1. He chooses to grab if P1 will let go with probability greater than .5. Otherwise, he would

share. But, since P2 believes that P1 is reciprocal, P2 also believes that P1 will punish with probability 1 if545

he grabs. So, P2 has to Share. This is supported in equilibrium: P1 plays (invest, punish) if reciprocal, and

(keep, let go) if selfish. P2 shares.

So, in this example, the punishment option can serve as a credible threat only when P1’s invest reveals

P1’s type. And in this case, the incomplete information game would result in the same predictions as the
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complete information game.550

This example illustrates why a psychologically plausible model of reciprocity must keep track of both

“action revising” (à la DK) and “type updating.”

Suppose that players do not revise beliefs about actions. Then, the reciprocal type of P1 may not punish

in equilibrium, even if P1 observed that P2 grabbed. After observing P1’s grab, P2 does not necessarily

think that P2’s Grab was intentional. This is psychologically implausible and does not capture the idea of555

reciprocity well. But, the action-revision feature per se is not enough, without type updating. Say that P2

does not perform type updating, and given P1’s investment believes that all types of P1 are investing. Since

P2 believes that with probability .6, P1 is selfish P1 will let go with probability .6. P2 finds it maximizing to

grab. In this case, investment will never be supported in equilibrium. However, as we elaborated, rationality

implies that P2 infers that he is facing the reciprocal type, since the selfish type would have chosen Keep560

instead. So, a psychologically sound model with rationality should predict that P2 must share. It leads to

our model of reciprocity that keeps track of both action-revising and type-updating.
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Appendix A

A.1 Proof of Theorem 1595

Proof. Let us first define a perturbed game Γ(ε), where players are restricted to play completely mixed

strategies. That is, for any θi, h and d ∈ Di(h), player i’s strategy satisfies that ai(θi,h)(d) ≥ ε , and ε is

sufficiently small so that |Di(h)| · ε ≤ 1.

We examine a sequence of perturbed games Γ(εn) with εn→ 0. In each perturbed game Γ(εn), the belief

system is uniquely determined by a strategy profile a according to Bayes rule, written as µ(a).600

First we prove that in a perturbed game, an equilibrium assessment exists. The proof resembles that

of existence of reciprocity equilibrium in complete information games in DK (2004). Since in a perturbed

game the belief system is a continuous function of the strategy profile, it suffices to find a fixed point of the

self-mapping on A. The existence of a fixed point is achieved by the standard applications of the Maximum

Theorem and Kakutani Theorem. Note that the conditions for these theorems are satisfied. First, Uθi
i is605

continuous in the behavior strategy, first-, and second-order beliefs, so the Maximum Theorem applies.

Second, Uθi
i is linear in si, thus the best-response correspondence is convex-valued, and Kakutani theorem

applies.

Next, because A is compact, we can select a subsequence of {an} such that µ(an)→ µ∗ and an→ a∗.

At last, we show that (a∗,µ∗) is an equilibrium assessment. By definition, (a∗,µ∗) is consistent as the

limiting point of a sequence of assessments under completely mixed strategies. What remains to be shown

30



is that each agent (i,h) maximizes his utility. Suppose not, then there is a type who can deviate at history h

from a∗i (θi)(h) to si ∈ Ai(θi,h,a∗) and

Uθi
i (si,(b∗i j(h),(c

∗
i jk(h))k 6= j) j 6=i,µ

∗(h))>Uθi
i (a∗i (θi)(h),(b∗i j(h),(c

∗
i jk(h))k 6= j) j 6=i,µ

∗(h))

where b∗i j(h) = a∗j(h) and c∗i jk(h) = a∗k(h), for all i, j,k.610

Then we construct a sequence of strategies sn
i such that sn coincides with an(θi)(h) except for h, and

sn
i (h) = si(h). Because Uθi

i is continuous, when n is large enough, Uθi
i (sn

i ,(b
n
i j(h),(c

n
i jk(h))k 6= j) j 6=i,µ

n(h))

approximates Uθi
i (si,(b∗i j(h),(c

∗
i jk(h))k 6= j) j 6=i,µ

∗(h)) and Uθi
i (an

i (θi,h),(bn
i j(h),(c

n
i jk(h))k 6= j) j 6=i,µ

n(h)) ap-

proximates Uθi
i (a∗i (θi)(h),(b∗i j(h),(c

∗
i jk(h))k 6= j) j 6=i,µ

∗(h)). That means there is n such that

Uθi
i (sn

i ,(b
n
i j(h),(c

n
i jk(h))k 6= j) j 6=i,µ

n(h))>Uθi
i (an

i (θi)(h),(bn
i j(h),(c

n
i jk(h))k 6= j) j 6=i,µ

n(h))

where bn
i j(h) = an

j(h) and cn
i jk(h) = an

k(h), for all i, j,k. That means, in the perturbed game Γ(εn) after

history h, the type θi of player i can profitably deviate to sn
i , which contradicts that (an,µn) is an equilibrium

assessment in Γ(εn).

A.2 Proof of Proposition 1

Proof. We only need to discuss s1 and then the case of s2 follows symmetrically.615

If for all θ1 ∈Θ1, s1(θ1) = D, then s1 is a trivial threshold strategy.

If there exists some θ1 ∈ Θ1 such that s1(θ1) = C, then because Uθ1
1 (C, p) ≥Uθ1

1 (D, p), it must be that

the utility from taking C is weakly higher than D.

p2c+θ1κ
θ1
12 (C, p2) ·λ θ1

121(p1, p2)≥ p2x+(1− p2)d +θ1κ
θ1
12 (D, p2) ·λ θ1

121(p1, p2)

Arranging the inequality we obtain that

θ1λ
θ1
121(p1, p2)[κ

θ1
12 (C, p2)−κ

θ1
12 (D, p2)]≥ p2(x− c)+(1− p2)d > 0

Note that κ
θ1
12 (C, p2)−κ

θ1
12 (D, p2) > 0 as C is always a kind action. So C is a strictly better choice for
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any type θ > θ1, which suggests s1 must be a threshold strategy.

A.3 Proof of Proposition 2

Proof. (⇒) Suppose that (s1,s2) is a cooperative equilibrium in the sense that there is some positive probabil-620

ity of cooperation by either player. It is easy to verify that no player is willing to cooperate if the co-player

never cooperates. So, in equilibrium, the cooperation probability must be positive for both players. I.e.

pi :=
∫

Θi
1[si(θi) = c]dFi > 0 for i = 1,2. In fact, choose the pair p = (p1, p2) as the pair of the cooperation

probability of the players.

And since we already showed that the equilibrium strategy is a threshold function, we just need to make625

sure that the threshold given by θ ∗i (p) constitutes the equilibrium strategy.

As shown in Eq.(2), θi≥ θ ∗i (p) implies that C is optimal (with indifference at θi = θ ∗i (p)) and θi < θ ∗i (p)

implies that D is optimal. So, in fact, the only possible strategy with cooperation probabilities, p, is

si(θi) =

 C if θi ≥ θ ∗i (p),

D if θi < θ ∗i (p).

Now I show that 1−Fi(θ
∗
i (p)) = pi is satisfied. This can be shown by noting that

pi =
∫

Θi

1[si(θi) = c]dFi =
∫

Θi

1[θi ≥ θ
∗
i (p)]dFi = 1−Fi(θ

∗
i (p)).

(⇐) Suppose that there is a pair (p1, p2) that satisfies the conditions. I show that, then, the strategies,

si(θi) =

 C if θi ≥ θ ∗i (p),

D if θi < θ ∗i (p).

constitute an equilibrium. Since 1−Fi(θ
∗
i (p)) = pi, given the strategies, the cooperation probability of i is

pi. And given this information, for all θi ≥ (<)θ ∗i (p), C (D) is optimal. So, every type is indeed utility-

maximizing.

630
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A.3 Proof of Proposition 3

Proof. Based on the remark at the end of Section 4, we only need to consider the case in which pi >
1
2 ,

i = 1,2, and in this area θ ∗i (p) is decreasing in pi and p j according to Eq. (8).

In the acquaintance society, the random draws θ1 and θ2 from F1(·) and F2(·) are revealed to players.

Indeed, the threshold for cooperation equilibrium under complete information is equivalent to θ ∗i (1,1) by635

definition. So the two players can form a reciprocity equilibrium (C,C) if and only if θi ≥ θ ∗i (1,1) for

i = 1,2. That means the corresponding cooperation rate is [1−F1(θ
∗
1 (1,1))] · [1−F2(θ

∗
2 (1,1))].

On the other hand, any ESRE (s1,s2) in the stranger society with associated probabilities p = (p1, p2),

such that pi ≤ 1 for i = 1,2, has a cooperation rate as [1−F1(θ
∗
1 (p))] · [1−F2(θ

∗
2 (p))].

Then, because θ ∗i is decreasing in p, so that θ ∗i (p)≥ θ ∗i (1,1) and [1−F1(θ
∗
1 (1,1))] · [1−F2(θ

∗
2 (1,1))]≥640

[1−F1(θ
∗
1 (p))] · [1−F2(θ

∗
2 (p))].
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